

Michal Ptaszynski

Fumito Masui

The Ainu people

- * Native inhabitants of Hokkaidō.
- * Estimated size of Ainu population in Hokkaidō around 16 thousand people (Hokkaidō regional government, 2013).

Image source: https://commons.wikimedia.org

Ainu language

- * Language isolate (no confirmed relation to any other language)
- * SOV (Subject-Object-Verb) word order (same as Japanese)
- * Polysynthetic (especially classical language, such as in *yukar* stories)

Example:

Iramante oruspe ka aeukoisoytak

Meaning: "We can also talk about hunting"

Source:

https://www.academia.edu/13753728/Polysynthesis_in_Ainu._In_M._F ortescue_M._Mithun_and_N._Evans_eds_Handbook_of_Polysynthesis._Oxford_OUP._Draft_._forthcoming_

Current situation

* Only 7.2% of Ainu people are able to communicate in the Ainu language (survey by Hokkaidō regional government conducted in 2013, with 586 respondents)

* Status: <u>Critically endangered / nearly extinct</u>

Example:

Iramante oruspe ka aeukoisoytak

Meaning: "We can also talk about hunting"

Source:

https://www.academia.edu/13753728/Polysynthesis_in_Ainu._In_M._F ortescue_M._Mithun_and_N._Evans_eds_Handbook_of_Polysynthesis._Oxford_OUP._Draft_._forthcoming_

Ainu language preservation and revitalisation:

- * Ainu language classes
- * radio course (STV Radio, Sapporo)
- * annual Ainu language speech contest (held by The Foundation for Research and Promotion of Ainu Culture),
- * "The Ainu Times" (published quarterly)
- * music groups singing in the Ainu language ("Oki", "Dub Ainu Band")

http://www.tonkori.com

Aims of this research

- create language analysis toolkit for the Ainu language
- facilitate analysis of the Ainu language by linguists and researchers of the Ainu literature
- contribute to the process of preservation and reviving of the Ainu language

- In 2012 Ptaszynski and Momouchi created POST-AL ("Part of Speech Tagger for the Ainu Language).
- POST-AL performs the following tasks:
- 1. Transcription normalization modification of parts of text that do not conform to modern rules of transcription (e.g. *kamui* -> *kamuy*).

	Example:
Original text:	Shineantota petetok un shinotash kushu
	payea <mark>sh</mark> awa
Normalized	Sineantota petetok un sinotas kusu payeas
transcription:	awa
Meaning:	"One day when I went for a trip up the
	river"

- In 2012 Ptaszynski and Momouchi created POST-AL ("Part of Speech Tagger for the Ainu Language).
- POST-AL performs the following tasks:
- 1. Transcription normalization modification of parts of text that do not conform to modern rules of transcription (e.g. *kamui* -> *kamuy*).
- 2. Word segmentation (tokenization) a process in which the text is separated into tokens (words, punctuation marks, etc.), which become the basic unit for further analysis.

	Example:								
Original text: unnukar awa kor wenpuri enantui ka									
POST-AL output (tokens):	un	nukar	a	wa	kor	wen	puri	enan	tuyka
	Token 1	Token 2	Token 3	Token 4	Token 5	Token 6	Token 7	Token 8	Token 9
Meaning:	"When	she foun	d me, he	er face [to	ook] the	color of	anger."		

- In 2012 Ptaszynski and Momouchi created POST-AL ("Part of Speech Tagger for the Ainu Language).
- POST-AL performs the following tasks:
- 1. Transcription normalization modificaton of parts of text that do not conform to modern rules of transcription (e.g. *kamui -> kamuy*).
- Word segmentation (tokenization) a process in which the text is separated into tokens (words, punctuation marks, etc.), which become the basic unit for further analysis.
- 3. Part-of-speech tagging assigning a part-of-speech marker to each token.

Example: POST-AL tagger iyosno ku hosipire kusne na output:【副】【人接】【他】【助動】【終助】 Meaning: "I'll return it later"

- In 2012 Ptaszynski and Momouchi created POST-AL ("Part of Speech Tagger for the Ainu Language).
- POST-AL performs the following tasks:
- 1. Transcription normalization modification of parts of text that do not conform to modern rules of transcription (e.g. *kamui* -> *kamuy*).
- 2. Word segmentation (tokenization) a process in which the text is separated into tokens (words, punctuation marks, etc.), which become the basic unit for further analysis.
- 3. Part-of-speech tagging assigning a part-of-speech marker to each token.
- 4. Word-to-word translation (into Japanese).

Example:

POST-AL tagger iyosno ku hosipire kusne na

output:【副】【人接】【他】【助動】【終助】

最後に、終わり、後から、後で私は、私が、私の返すつもりであるよ、か

Meaning: "I'll return it later"

POST-AL's dictionary base

- Originally, it contained one dictionary: Ainu shin-yoshu jiten (lexicon to Yukie Chiri's Ainu Shin-yoshu ("Ainu Songs of Gods")) by Kirikae (2003)
- 2,019 entries
- The dictionary has been transformed to XML format
- Each entry contains:
- 1. Token (word, morpheme, etc.)
- 2. Part of speech
- 3. Meaning (in Japanese)
- 4. Usage examples (not for all entries)
- 5. Reference to yukar story it appears in (not for all entries)

Sample entry:

```
<word>aep</word>
<morph>a$^{2}$-e$^{1}$-p$^{1}$</morph>
<pos>名詞</pos>
食べ物
<ref>aep'omuken</ref>
```


Improving transcription normalization

Transcription change rules:

	Original transcription											
ch	ch sh(i) ai ui ei oi au iu eu ou b g d m											
c	c s ay uy ey oy aw iw ew ow p k t n											
	Modern transcription standard											

Output:
chepshuttuye chiki
cepshuttuye chiki
chepsuttuye chiki
chepshuttuye ciki
cepsuttuye chiki
chepsuttuye chiki
cepsuttuye ciki
cepshuttuye ciki
cepshuttuye ciki
cepshuttuye ciki

Improving transcription normalization

Transcription change rules:

	Original transcription											
ch	ch sh(i) ai ui ei oi au iu eu ou b g d m									m		
c	c s ay uy ey oy aw iw ew ow p k t n									n		
	Modern transcription standard											

Improving tokenizer

Input string:	List of all matching words found in the dictionary base:		Possible tokenization	ns:	\Rightarrow	Output:
chepshuttuye cepshuttuye chepsuttuye cepsuttuye	tuye cep sut tuy ep he hu su tu ye e	1 TOKE 2 TOKE 3 TOKE 4 TOKE	ENS NOTENS CEPS	okenizer sto	•	cep sut tuye
	р			•		ch (which has er of tokens)

Improving tokenizer

PROBLEM: This tokenization algorithm always prefers long words over shorter ones.

"Tagging is a disambiguation task" (some words have more than one possible part-of-speech) (Jurafsky and Martin, 2016. *Speech and Language Processing*)

Two methods of POS disambiguation applied in POST-AL:

- 1. N-gram based POS disambiguation
- 2. Term Frequency (TF) based POS disambiguation

Improving part-of-speech tagger

N-gram based POS disambiguation:

* Uses sample sentences included in the dictionary base for determining the correct POS tag

Matching entries found in the dictionary base:

<word>ki</word>
<pos>三項動詞</pos>
<ex>inkar he tap nep
tap teta ki humi okay </ex>
<ex>... newa ci ki p ne
korka </ex>
<ex>ki a ine no</ex>
<ex>ki p ne
korka</ex>
</ex>

3. <word>ki</word> <pos>位置名詞長形形成接尾辞</pos>

<word>ki</word> <pos>助動詞</pos> <ex>he ki</ex> <ex>ki humi okay</ex> <ex>ki kuni ne</ex> <ex>ki kusne</ex> <ex>ki rok okay</ex> <ex>ki ruwe ne</ex> <ex>ki ruwe okay</ex> <ex>ki siri ne</ex> <ex>ki siri tap an</ex> <ex>ki wa</ex> <ex>ki wa kusu</ex> <ex>ki wa ne yakka</ex> <ex>ki va </ex> <ex>sir an ki ko</ex>

Output: 之 二項動詞 [transitive verb]

Improving part-of-speech tagger

TF based POS disambiguation:

* Checks term frequency of each candidate word (= number of sample sentences included in the dictionary base) for determining the correct POS tag

Input:

Matching entries found in the dictionary base:

<word>ki</word>
<pos>三項動詞</pos>
<ex>inkar he tap nep
tap teta ki humi okay </ex>
<ex>... new ci ki p ne
korka </ex
<ex>ki a ine no</ex>
<ex>ki p ne korka</ex>

3. <word>ki</word> <pos>位置名詞長形形成接尾辞</pos> <word>ki</word>
<pos>助動詞</pos>

<ex>he ki</ex>
<ex>ki humi okay</ex>
<ex>ki kuni ne</ex>
<ex>ki kusne</ex>
<ex>ki rok okay</ex>
<ex>ki ruva ne</ex>
<ex>ki ruva okay</ex>
<ex>ki ruva okay</ex>
<ex>ki ruva okay</ex>

<ex>ki siri tap an</ex>

<ex>ki wa</ex>

<ex>ki wa kusu</ex>

<ex>ki wa ne yakka</ex>

<ex>ki ya </ex>

<ex>sir an ki ko</ex>

Output:

Improving part-of-speech tagger

- Word n-grams are more reliable as a method for POS disambiguation
- On the other hand, for many cases there are no relevant usage examples in the dictionary base
- To compensate for that, we created a modified tagging algorithm, which in such cases also takes into account the Term Frequency

Dictionaries used:

1. Ainu shin-yōshū jiten (Kirikae, 2003) — based on classical Ainu language (yukar epics). The dictionary contains 2,019 entries.

Sample entry:

```
<word>aep</word>
<morph>a$^{2}$-e$^{1}$-p$^{1}$</morph>
<pos>名詞</pos>
食べ物
<ref>aep'omuken</ref>
```


Dictionaries used:

2. A Talking Dictionary of Ainu: A New Version of Kanazawa's Ainu Conversational dictionary (Bugaeva and Endō, 2010) — an online dictionary, based on the *Ainugo kaiwa jiten* (Jinbō and Kanazawa, 1898). Original dictionary contains 3,847 entries.

Dictionaries used:

2. A Talking Dictionary of Ainu: A New Version of Kanazawa's Ainu Conversational dictionary (Bugaeva and Endō, 2010) – an online dictionary, based on the *Ainugo kaiwa jiten* (Jinbō and Kanazawa, 1898). Original dictionary contains 3,847 entries.

Sample entry (original):

此村に何か食物があるか Tan kotan ta nepka aep an ruwe he an? tan kotan ta nep ka aep an ruwe an? タン コタン タ ネプ カ アエプ アン ルウェ アン? この 村 に 何 か 食べ物 ある こと ある 【連体】【名】【格助】【疑問】【副助】【名】【自】【形名】【自】 「この村に何か食べ物はありますか?」 "Is there anything to eat in this village?" tan kotan ta nep ka aep an ruwe an? tan kotan ta nep ka a-e-p an ruwe an this village at what even INDF.A-eat-thing exist.SG INFR.EV exist.SG dem n pp n.interr adv.prt n vi nmlz vi

Original entries often consist of more than one word (multiple words or phrases)

Dictionaries used:

2. A Talking Dictionary of Ainu: A New Version of Kanazawa's Ainu Conversational dictionary (Bugaeva and Endō, 2010) – an online dictionary, based on the *Ainugo kaiwa jiten* (Jinbō and Kanazawa, 1898). Original dictionary contains 3,847 entries.

Sample entry (original):

此村に何か食物があるか Tan kotan ta nepka aep an ruwe he an? tan kotan ta nep ka aep an ruwe an? タン コタン タ ネプ カ アエプ アン ルウェ アン? この 村 に 何 か 食べ物 ある こと ある 【連体】【名】【格助】【疑問】【副助】【名】【自】【形名】【自】 「この村に何か食べ物はありますか?」 "Is there anything to eat in this village?" tan kotan ta nep ka aep an ruwe an? tan kotan ta nep ka a-e-pan ruwe an this village at what even INDF.A-eat-thing exist.SG INFR.EV exist.SG dem n pp n.interr adv.prt n vi nmlz vi

Sample entry (modified dictionary):

```
<word>aep</word><kana>アエプ</kana>
<morph>a-e-p</morph><pos>【名】
</pos>
<pos_en>n</pos_en>
食べ物<tr_en>food</tr_en>
<ge>INDF.A-eat-thing</ge>
<ex>tan kotan ta nep ka aep an ruwe
an?</ex>
<ex_jp>この村に何か食べ物はありますか?
</ex_jp>
<ex_en>ls there anything to eat in this
village?</ex_en>
```


Dictionaries used:

- 3. Combined dictionary (1+2).
- A) extracted entries containing words listed in both dictionaries
- B) automatically unified duplicate entries, basing on their Japanese translations (at least one kanji character in common)

Entry from Ainu shin-yōshū jiten

```
<word>aep</word>
<morph>a$^{2}$-e$^{1}$-p$^{1}$</morph>
<pos>名詞</pos>
食べ物
<ref>aep'omuken</ref>
```

Entry from Ainu Conversational Dictionary

```
<word>aep</word><kana>アエプ</kana>
<morph>a-e-p</morph><pos>【名】
</pos>
<pos_en>n</pos_en>
食べ物etr>食べ物<tren>food<tren>
<ge>INDF.A-eat-thing</ge>
<ex>tan kotan ta nep ka aep an ruwe
an?</ex>
<ex_jp>この村に何か食べ物はありますか?
</ex_jp>
<ex_ex_jp>
<ex_jp>
<
```


Dictionaries used:

- 3. Combined dictionary (1+2).
- A) extracted entries containing words listed in both dictionaries
- B) automatically unified duplicate entries, basing on their Japanese translations (at least one kanji character in common)
- C) that resulted in a dictionary containing 4,161 entries.

```
<word>aep</word><kana>アエプ</kana>
<morph_kk>a$^{2}$-e$^{1}$-p$^{1}$</morph_kk>
<morph_jk>a-e-p</morph_jk>
<pos_jk>【名】</pos_jk>
<pos_kk>名詞</pos_kk>
<pos_en>n</pos_en>
食べ物<tren>food<tren><ex>tan kotan ta nep ka aep an ruwe an?</ex>
<ex_jp>この村に何か食べ物はありますか?</ex_jp>
<ex_en>ls there anything to eat in this village?</ex_en>
<ge>INDF.A-eat-thing</ge>
<ref> aep'omuken</ref>
```


Transcription normalization results:

		Avg. result (F-score)
DICTIONARY	1. <i>Ainu shin-yōshū jiten</i> (Kirikae)	91.85%
	2. Ainu Conversational Dictionary (Jinbō and Kanazawa)	87.96%
RY	3. Combined dictionary (1+2)	92.48%

Tokenization results:

		Avg. result (F-score)
DICTIONARY	1. <i>Ainu shin-yōshū jiten</i> (Kirikae)	86.73%
	2. Ainu Conversational Dictionary (Jinbō and Kanazawa)	69.93%
RY	3. Combined dictionary (1+2)	87.73%

POS tagging results:

		Avg. result (F-score)	Tagging a versi	
		Avg.	N-grams	TF
		72.16%	NO	YES
	1. Ainu shin-yōshū jiten (Kirikae)	71.71%	YES	NO
		74.72%	YES	YES
DICTIONARY		80.01%	NO	YES
ION	2. Ainu Conversational Dictionary (Jinbō and Kanazawa)	77.28%	YES	NO
	(Jinoo ana Ixanazawa)	81.55%	YES	YES
Ω		90.62%	NO	YES
	3. Combined dictionary (1+2)	90.27%	YES	NO
		92.82%	YES	YES

Conclusions

- 1. Improved the following functions of POST-AL:
- Transcription normalization
- Tokenizer
- POS tagger
- 2. Expanded POST-AL's dictionary base by combining 2 dictionaries:
- found out that the combination improved overall performance of the system

Thank you for your attention!

Applied datasets:

- Yukar (9-13) from *Ainu shin-yōshū* ("Ainu Songs of Gods")
- JK dictionary sample sentences
- Sample text from Masayoshi Shibatani's *The Languages of Japan*
- Mukawa dialect samples (by Chiba University)

Statistics of unknown words:

	TEST DATA									
			Yukar 9-13	JK samples	Shib.	Muk.				
WORI	DS TOTAL	J	1613	428	154	87				
			431	0	32	11				
D	JK	UNKNOWN	JK UNK		0,00%	20,78%	12,64%			
ICT		NOV	15	84	48	20				
DICTIONARY	KK				19,63%	31,17%	22,99%			
RY		JK+KK S		0	23	10				
	JK+KK	DS	0,87%	0,00%	14,94%	11,49%				

Transcription normalizat

Relatively low results for sample sentences from JK dictionary.

Explanation:

				We decided not to apply some of the transcription change rules observed only in that dictionary (such as							
Yukar 9 Yuk				'ra'→'r' (e.g. <i>arapa→arpa</i>) or 'ei'→'e' (e.g. <i>reihei→rehe</i>)), as initial tests indicated that including							
	JK	92.34%	91.35%	them in the algorithm can cause errors with processing yukars and other texts.							
DICTIONARY	KK	97.18%	98.55%								
	JK+KK	96.43%	97.11%	94.80%	91.41%	96.79%	78.32%	92.48%			

Tokenization experiment results (F-score):

			TEST DATA									
		Yukar 9	Yukar 10	Yukar 11	Yukar 12	Yukar 13	JK samples	Shibatani	Mukawa	Avg.		
DI	JK	66.53%	64.40%	67.33%	64.13%	67.80%	87.07%	72.80%	74.40%	69.93%		
DICTIONARY	KK	89.23%	92.30%	93.07%	85.63%	92.73%	74.80%	68.60%	76.20%	86.73%		
Ž	JK+KK	85.37%	91.40%	90.03%	84.63%	91.87%	87.10%	79.90%	79.80%	87.73%		

Future tasks

- 1. Develop a tokenization algorithm based on word n-grams rather than single words.
- 2. Enlarge the dictionary base by adding other dictionaries, such as the *Ainu-Japanese Dictionary: Saru Dialect* by Suzuko Tamura.
- 3. Expand the dictionary base with the information about alternative transcription methods appearing in older texts (in order to improve the normalization of transcription in such texts).
- 4. Build a statistical model of the Ainu language, reflecting probability distribution over different sequences (bigrams or trigrams) of parts of speech, and use it to improve POS tagging performance.