Extracting References to the Future from News Using Morphosemantic Patterns

*Yoko Nakajima †‡
Michal Ptaszynski †
Hirotoshi Honma ‡
Fumito Masui †

†‡ Kitami Institute of Technology
‡ National Institute of Technology, Kushiro college

IJCAI15 WS
Chance Discovery, Data Synthesis, Curation and Data Market
background

Future References Sentences (FRS)

• Describe the probable future event.
• Contain comments to the future event.
• Include information on past events, background knowledge and professional views etc.

Using FRS people can decide about their action and thinking more effectively.
Research purpose

Extract **future reference sentences** from corpus for support action or thinking of people
Our previous work

1. Investigation of future reference expressions
2. Extract patterns of future reference expressions

Future Reference Expression : FRE
Future Reference Sentence : FRS
Our previous work

1. Investigation of FRE

Corpus: newspapers
data: 270 sentences extracted randomly
 • not depend on morphology or temporal expressions.
 • used variety of words in future references sentences.

Corpus: newspaper
data: 1000 sentences extracted randomly
annotated manually: one expert, two laypeople
(referring to future or not)
 • 13% of newspaper corpus
FRE manually extracted from 270 sentences

<table>
<thead>
<tr>
<th>Type</th>
<th>frequency</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporal Expression</td>
<td>70</td>
<td>• next year</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• tommorrow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• from month M year Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• this month</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• next in ... etc.</td>
</tr>
<tr>
<td>verb</td>
<td>141</td>
<td>• mezasu (aim to)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• hoshin (plan to)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• - suru (do)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• - iru (is/to be) ... etc.</td>
</tr>
</tbody>
</table>
Propose method

Extract patterns of future reference expressions

Morphology + Semantic

Morphosemantic Patterns : MoPs

example

• analysis of Indonesian suffix in Wordnet [*1]
• analysis of Croatian lexis [*2]

Semantic role labelling

a sentence: “John killed Mary.”

predicate argument structure

 semantic role labelling

“actor action patient”

Application examples

- Construction of Japanese Frame Net [*3]
- Collection of Event Ontology [*4]

Morphological analysis

a sentence: “John killed Mary.”

morphological structure

“noun verb(past) noun”

MeCab

Standard tool morphology for Japanese [*5]

Additional Post-processing

• ordering of priority taking semantic roll
 1. Semantic role (Agent, Patient, Object, etc.)
 2. Semantic meaning (State change, etc.)
 3. Category (Dog \rightarrow Living animal \rightarrow Animated object)
 4. Adjunct (Time-Point, Time-Line, Location, etc.)
 5. parts of speech

• compound word clustering

Example:

“International Joint Conference on Artificial Intelligence”
\rightarrow Adjective Adjective Noun Preposition Adjective Noun
\rightarrow Proper Noun
Example of morphosemantic structure (MS)

Japanese: ニホンウナギが絶滅危惧種に指定され、完全養殖によるウナギの量産に期待が高まっている。

Alphabet: nihonunagi ga zetumetu kigushu ni sitei sare, kanzen yo-shoku ni yoru unagi no ryousan ni kitai ga takamatte iru.

English: As Japanese eel has been specified as an endangered species, the expectations grow towards mass production of eel in full aquaculture.

MS: [Object] [Agent] [State change] [Action] [Noun] [State change] [Object][State change]
Extracting morphosemantic patterns

SPEC : Sentence Pattern Extraction arChitecture [*6]

- Generate all combination from all elements of a sentence.
- Calculate occurrence frequency of combinations in a corpus.
- Frequent combinations = patterns

Generating all patterns from a sentence

J : [kinou] [kare ha] [watashi ni] [tegami wo] [okutta]

MS : [Time-Point] [Agent] [Patient] [Object] [State change]

E : [yesterday] [he] [me] [a letter] [sent]

1. [Time-Point] [Agent] [Patient] [Object] [State change]
2. [Time-Point] * [Patient] [tObject] [State change]
3. [Time-Point] [Agent] * [Object] [State change]
4. [Time-Point] [Agent] [Patient] * [State change]
5. [Time-Point] * [Object] [State change]
6. [Time-Point] [Agent] * [State change]
7. [Time-Point] * [State change]

::
Experiment setup

corpus

- Japan Economy Newspaper
- Asahi Newspaper (national)
- Mainichi Newspaper (national)
- Hokkaido Newspaper (regional)
- http://www.nikkei.com/
- http://www.asahi.com/
- http://www.hokkaido-np.co.jp/

- extract 1000 sentences randomly
- annotate FRE or NRE

*FRE : 13% of newspaper corpus.

Training data

set50 and set130
FRS
(50 or 130)
and
other sentences
(50 or 130)

learning by SPEC
Experiment setup

- sophisticated patterns (with disjoint elements)
 - awarding length (LA)
 - awarding length and occurrence (LOA)
 - awarding none (normalized weight, NW)
 - using all patterns (ALL)
 - erasing all ambiguous patterns (AMB)
 - erasing only those ambiguous patterns which appear in the same number in both sides (zero patterns, 0P)
 - patterns (PAT)
 - only n-grams (NGR)

- n-fold cross validation
- Results calculated in F-score, Precision, Recall
- Choose the most useful pattern
Experiment 1: Extract MoPs

- Test data: set50, set130
- 10-fold cross validation

Compare to F-scores set130 and set50

<table>
<thead>
<tr>
<th>sofisticated patterns</th>
<th>set50</th>
<th>set130</th>
</tr>
</thead>
<tbody>
<tr>
<td>all_patterns</td>
<td>0.71</td>
<td>0.70</td>
</tr>
<tr>
<td>zero_deleted</td>
<td>0.71</td>
<td>0.70</td>
</tr>
<tr>
<td>ambiguous_deleted</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>length_awarded</td>
<td>0.71</td>
<td>0.70</td>
</tr>
<tr>
<td>length_awarded_zero_deleted</td>
<td>0.71</td>
<td>0.69</td>
</tr>
<tr>
<td>length_awarded_ambiguous_deleted</td>
<td>0.70</td>
<td>0.70</td>
</tr>
</tbody>
</table>
The examples of extracted MoPs

<table>
<thead>
<tr>
<th>occurrence</th>
<th>Future Reference Patterns</th>
<th>occurrence</th>
<th>Other Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>[Action]*[State change]</td>
<td>5</td>
<td>[Place]*[Agent]</td>
</tr>
<tr>
<td>23</td>
<td>[Action]*[Object]</td>
<td>4</td>
<td>[Number]*[Agent]</td>
</tr>
<tr>
<td>22</td>
<td>[Action]*[Action]</td>
<td>4</td>
<td>[Verb]*[Artifact]</td>
</tr>
<tr>
<td>20</td>
<td>[State change]*[Object]</td>
<td>4</td>
<td>[Person]*[Place]</td>
</tr>
<tr>
<td>16</td>
<td>[State change]*[State change]</td>
<td>3</td>
<td>[Number][Agent][Action]</td>
</tr>
<tr>
<td>15</td>
<td>[Action][Object][State change]</td>
<td>3</td>
<td>[Adjective][State change][State change]</td>
</tr>
<tr>
<td>15</td>
<td>[Action][State change][No state change(activity)]</td>
<td>3</td>
<td>[Place][Place][No state change(activity)]</td>
</tr>
</tbody>
</table>
Experiment 2: Extract FRS with frequent patterns

• corpus
 Mainichi Newspaper (1996)
 topics: economy, international event, energy
 270 sentences

• validation data set
 annotate manually from 270 sentences
 • one expert • four laypeople

 FRS: 100, other: 170

• frequent patterns
 out of learning set 130 with length awarded
Extract with frequent patterns by pattern matching

A: first 10 patterns
B: adding 5 patterns longer than three elements to set A
C: subtracting 5 patterns from the tail of set A
D: using only first 10 patterns containing more than three elements

<table>
<thead>
<tr>
<th>occurrence</th>
<th>Frequent patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>[action] * [state change]</td>
</tr>
<tr>
<td>23</td>
<td>[Action] * [Object]</td>
</tr>
<tr>
<td>22</td>
<td>[Action] * [Action]</td>
</tr>
<tr>
<td>20</td>
<td>[State change] * [Object]</td>
</tr>
<tr>
<td>16</td>
<td>[State change] * [State change]</td>
</tr>
<tr>
<td>15</td>
<td>[Action] * [Object] * [State change]</td>
</tr>
<tr>
<td>14</td>
<td>[Object] * [Action] * [State change]</td>
</tr>
<tr>
<td>13</td>
<td>[Object] * [Action] * [Object]</td>
</tr>
<tr>
<td>12</td>
<td>[State change] * [Action] * [State change]</td>
</tr>
<tr>
<td>10</td>
<td>[Action] * [Action] * [No state change(Activity)]</td>
</tr>
<tr>
<td>9</td>
<td>[State change] * [Noun] * [Object]</td>
</tr>
<tr>
<td>8</td>
<td>[Action] * [State change] * [No state change(Activity)]</td>
</tr>
<tr>
<td>8</td>
<td>[Object] * [Action] * [Object] * [State change]</td>
</tr>
<tr>
<td>5</td>
<td>[Action] * [State change] * [Action] * [No state change(Activity)]</td>
</tr>
<tr>
<td>5</td>
<td>[Action] * [State change] * [Object] * [No state change(Activity)]</td>
</tr>
</tbody>
</table>
Performance of extracted FRS with most frequent patterns

<table>
<thead>
<tr>
<th>Pattern set</th>
<th>P</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: 10 patterns</td>
<td>0.39</td>
<td>0.49</td>
<td>0.43</td>
</tr>
<tr>
<td>B: 15 patterns</td>
<td>0.38</td>
<td>0.49</td>
<td>0.43</td>
</tr>
<tr>
<td>C: 5 patterns</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>D: 10 patterns with only over 3 elements</td>
<td>0.42</td>
<td>0.37</td>
<td>0.40</td>
</tr>
<tr>
<td>baseline (10 temporal expressions) [*2]</td>
<td>0.50</td>
<td>0.05</td>
<td>0.10</td>
</tr>
</tbody>
</table>

* 2 [Jatowt and Au Yeung 2011]

6/170 sentences
Experiment 3 : Validation for fully optimized model

• Corpus:
 Mainichi Newspaper (1996)
 topics: economy, international event
 270 sentences (FRS:100 Non FRS:170)

• Training data:
 1 cross validation for set130
 result calculated with length-awarded

• Evaluation:
 one expert, four laypeople
Classification result

Precision, Recall, F-score

Precision, Recall, F-score

break-even point

0.76

P=0.89
R=0.13
F=0.22

P=0.65
R=0.98
F=0.78
Example of extracted future referring sentence

1. score=2.27

RJ: *Dosha* wa kore made,*Shigen Enerugi-Cho ni taishi,* do hatsudensho no *heisa,* kaitai ni tsuite *ho shin o setumei shite kita ga,* kaitai ni tsuite no ho teki kisei wanai tame, do chō mo kaitai no kettei o shitam eru koto *ni nari-so da.*

E: So far the *company* has been describing to the *Agency for Natural Resources and Energy* the policy for either *closure* or dismantling of the plant, and since there are no legal regulations found for dismantling, it is most likely that the agency will also lean to the decision of dismantling.

MS: [Agent] [Other] [Organization] [Action] [State-change] [State-change][Object][Role] [State-change] [State-change][Action][Adjective][Thing][Agent][State-change][Other] [Verb]

MoPs: [Agent]*[Verb],
[Agent]*[Organization]*[Verb],
[Agent]*[Action][State-change]*[Verb],
[Agent]*[Organization][State-change][Verb].
Conclusion

• We presented a novel method for extracting references to future events.
• Based the method on automatically extracted morphosemantic patterns.
 - Represent news articles in morphosemantic structure.
 - Extract all possible morphosemantic patterns from the corpus.
• Performed a text classification experiment.
• Compared 14 different classifier versions.
• Compared to the state-of-the-art.
 - The proposed method outperformed the state-of-the-art.
• Validated the method on new dataset.
 - Final score was break even point of precision and recall = 76%.
Future Work

• Increase the size of the experimental datasets.
• Apply in practice
 - Estimating probable unfolding of events.
 - Contribute to trend prediction.
Thank you
Generating all patterns

\[\text{[pattern]} \]

\[1 \ 2 \ 3 \ 4 \ \ldots \ \ n \]

number of elements : \(n \)
number of group of combination : \(k \)
in \(k \)-element : \(\quad k \subseteq n \quad 1 \leq k \leq n \)

\[
\left(\begin{array}{c} n \\ k \end{array} \right) = \frac{n!}{k!(n-k)!}
\]

(1)

\[
\sum_{k=1}^{n} \left(\begin{array}{c} n \\ k \end{array} \right) = \frac{n!}{1!(n-1)!} + \frac{n!}{2!(n-2)!} + \ldots + \frac{n!}{n!(n-n)!} = 2^n - 1
\]

(2)