Brute Force Works Best Against Bullying

Michal Ptaszynski, Fumito Masui, Yasutomo Kimura, Rafal Rzepka and Kenji Araki
Outline

1. Cyberbullying as social problem
2. Previous research
3. Proposed method
4. Experiments
5. Future work
Cyberbullying

Slandering and humiliating people on the Internet.

Recently noticed social problem.

Introduction

INTERNET PATROL

- Internet monitoring by PTA.
- Request site admin to remove harmful entries.
- High cost of time and fatigue for net-patrol members.

HELP by ICT
Previous Research

2009

2010

Patent name: An Apparatus and Method for Detection of Harmful Entries on Internet

2011

T. Nitta

2012

Language Combinatorics

2013

2014

Automatic acquisition of harmful words

2015

Category Relevance Optimization

Automatic acquisition of harmful words

SO-PMI-IR / phrases

Affect analysis of cyberbullying data

SVM / optimization

Language Combinatorics

Affect analysis of cyberbullying data
Previous Research

-

SO-PMI-IR / phrases

SVM / optimization

2013 PATENT

Language Combinatorics

Category Relevance Optimization

Automatic acquisition of harmful words

Previous Research

Affect analysis of cyberbullying data

SO-PMI-IR / phrases

SVM / optimization

2009
2010
2011
2012
2013
2014
2015

2013

PATENT

Language Combinatorics

Automatic acquisition of harmful words

Category Relevance Optimization

Previous Research

- **2009**
 - SO-PMI-IR / phrases
 - SVM / optimization
 - Affect analysis of cyberbullying data

- **2010**

- **2011**

- **2012**

- **2013**

- **2014**
 - Language Combinatorics

- **2015**
Previous Research

2009

Affect analysis of cyberbullying data

2010

SO-PMI-IR / phrases

SVM / optimization

Automatic acquisition of harmful words

2011

Language Combinatorics

2012

2013

2014

2015

Category Relevance Optimization

Patent

Previous Research

2009
- Affect analysis of cyberbullying data

2010
- SVM / optimization

2011
- SO-PMI-IR / phrases

2012
- Category Relevance Optimization

2013

2014
- Automatic acquisition of harmful words

2015
- Language Combinatorics

References

Previous Research

Previous Research

- Automatic acquisition of harmful words

- Language Combinatorics

- Category Relevance Optimization

- SVM / optimization

- Affect analysis of cyberbullying data

- SO-PMI-IR / phrases

- 2013 PATENT
Dataset

- Actual data collected by Internet Patrol (annotated by experts)
- From unofficial school forums (BBS)
- Provided by Human Right Center in Japan (Mie Prefecture)
- According to the Definition by Japanese Ministry of Education (MEXT)
- 1,490 harmful and 1,508 non-harmful entries
Proposed Method
Sentence patterns = ordered non-repeated combinations of sentence elements.

\[\binom{n}{k} = \frac{n!}{k!(n-k)!} \]

for \(1 \leq k \leq n \), there is all possible \(k \)-long patterns, and

\[\sum_{k=1}^{n} \binom{n}{k} = \frac{n!}{1!(n-1)!} + \frac{n!}{2!(n-2)!} + \ldots + \frac{n!}{n!(n-n)!} = 2^n - 1 \]

Extract patterns from all sentences and calculate occurrence.
Language Combinatorics

Example: What a nice day!

5-element pattern: What a nice day! (1)

<table>
<thead>
<tr>
<th>4-el. patterns:</th>
<th>3-el. patterns:</th>
<th>2-el. patterns:</th>
<th>1-el. patterns:</th>
</tr>
</thead>
<tbody>
<tr>
<td>What a nice *!</td>
<td>a nice *!</td>
<td>What a</td>
<td>What</td>
</tr>
<tr>
<td>What a nice day</td>
<td>What a nice</td>
<td>What *!</td>
<td>a</td>
</tr>
<tr>
<td>What a * day</td>
<td>What a *!</td>
<td>nice *!</td>
<td>nice</td>
</tr>
<tr>
<td>(5)</td>
<td>(10)</td>
<td>(10)</td>
<td>(5)</td>
</tr>
</tbody>
</table>

That is why “brute force”

...
Sentence patterns = ordered non-repeated combinations of sentence elements.

for $1 \leq k \leq n$, there is

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

all possible k-long patterns, and

$$\sum_{k=1}^{n} \binom{n}{k} = \frac{n!}{1!(n-1)!} + \frac{n!}{2!(n-2)!} + \ldots + \frac{n!}{n!(n-n)!} = 2^n - 1$$

Normalized pattern weight

$$w_j = \left(\frac{O_{pos}}{O_{pos} + O_{neg}} - 0.5 \right) \times 2$$

Score for one sentence

$$score = \sum w_j , \ (1 \geq w_j \geq -1)$$
Experiment setup

Pattern List Modification
1. All patterns
2. Zero-patterns deleted
3. Ambiguous patterns deleted

Weight Calculation Modifications
1. Normalized
2. Award length
3. Award length and occurrence

Preprocessing
1. Tokenization
2. POS
3. Tokens+POS

All patterns vs. only n-grams

Automatic threshold setting

10-fold Cross Validation

Is it worth the time?
One experiment = 420 runs

Data is never perfectly balanced.
Results

Best F-score
F=0.8
P=0.76
R=0.84
Results

Specific elements are more effective than generalized ones.

Best F-score
F=0.8
P=0.76
R=0.84
Results

Best BEP

Unmodified Tokens+POS

P=0.79
R=0.79
Results

Comparison with state-of-the-art

![Graph showing precision vs. recall comparison with various methods, including Matsuba et al. 2011, Nitta et al. 2013, Nitta et al. repeated in 2015, Proposed (worst), and Proposed (best).]
Results

Comparison with state-of-the-art

- More efficient (user does almost nothing)
- Applicable to other languages
- Can point out non-emotive elements
- Pattern lists contained all Nitta et al.’s seed words → could improve Nitta with patterns
Conclusions

- Presented research on cyberbullying detection.
- Proposed novel method.
 - Combinatorial algorithm applied in automatic extraction of sentence patterns.
- Used those patterns in classification of cyberbullying.
- Tested on actual data obtained by Internet patrol.
- Outperformed previous methods.
- Requires minimal human effort.
Future work

- Apply different preprocessing and classifiers for further improvement.
- Obtain new data by applying method in practice.
- Verify the actual amount of CB information on the Internet and reevaluate in more realistic conditions.
Thank you for your kind attention!

Michal Ptaszynski
paszynski@ieee.org