Michal Ptaszynski, Pawel Dybala, Radoslaw Komuda, Rafal Rzepka and Kenji Araki

Development of Emoticon Database for Affect Analysis in Japanese

ABSTRACT

We present our work on creating a database of emoticons – face marks widely used to convey emotions in text-based online communication. The database is created by gathering emoticons from numerous dictionaries of face marks and online jargon. The inconsistencies in emotion classification provided by various dictionaries are solved by processing them with an affect analysis system developed previously. Having the emoticon database annotated automatically this way, we extract patterns from it patterns of semantic areas of emoticons, such as "eyes" and "mouths". Finally, we perform annotation of the semantic areas based on co-occurrence statistics and the theory of kinesics.

荒木研究室

ARAKI LABORATORY

PROTOTYPE METHOD Emotive Lacks in expressions database of (/^\^) The method [1] determines whether lexicon is emotemes the emotion is appropriate for the

II. THEORY OF KINESICS

Kinesics - refers to all non-verbal behavior related to movement, such as postures, gestures and facial expressions (synonym of "body language"). Created by Birdwhistell in 1952-1970 [5, 6].

-Non-verbal behavior is used in everyday communication systematically and can be studied similarly to

-0-	Blank-faced	\$ \$	Slitted eyes
	Single raised	ବ ବ	Eyes upward
	brow (indicates brow raised)	-0 0-	Shifty eyes
— 、	Lowered brow	` ຜ ຜ″	Glare
\/	Medial brow	\ni	Tongue in cheek
	contraction	\sim	Pout
	Medial brow nods	445	Clenched teeth
$\overline{}$	Raised brows	Ø	Toothy smile
00	Wide eyed		Square smile
— o	Wink	\bigcirc	Open mouth
00	Sidewise look	SOL	Slow lick—lips
9 Q	Focus on auditor	Ø ◯ r	Quick lick—lips
Ø Ø	Stare	\mathfrak{S}	Moistening lips
00	Rolled eyes	8	Lip biting

be studied similarly to		CO
language.		
-A minimal part		Me no
distinguished in		
kinesics is a <i>kineme</i> -		Ra
the smallest set of body	00	Wi
moves containing a	— o	Wi
certain meaning, e.g.		**1
raising eyebrows,	00	Sic
annotated by))	Fo
kinegraphs.	K K	
	60	Sta

Emoticons: representations of body language in online text-based communication. \rightarrow We can base the analysis of emotive information conveyed in emoticons on annotations of the particular semantic areas (kinemes) grouped in an automatically constructed emoticon database.

I. DEFINITION OF EMOTICON

Emoticon - one-line string of	No. of sets	Emoticon	S ₁	B ₁	S ₂	EL	м	E _R	S ₃	B ₂	S 4	
symbols containing at least	1 ヾ(. ・ω・)ノ		<i>/"</i>	(0	•	ω	•	N/A)	1	
one set of semantic areas:	1	(——;)	N/A	(N/A	—	N/A	—	•)	N/A	
"mouth" [M], "eyes" [E _L], [E _R],	SET 01 SET 02									SET 02		
"emoticon borders" [B ₁], [B ₂],												
and "additional areas" [S ₁] -	2	(^^)人(^^)	N/A	(N/A	٨	N/A	۸	N/A)	人	(^^)
[S ₄]. Minimal emoticon set	2	☆- (●≧ ▽)人(▽ ≦ ●)- ☆	☆-	(•	∧ II	▽	N/A	N/A)	人	(⊽≦●)- ☆
considered contains: "E _L ,E _R ",	SET 01 SET 02 SET 03 SET 04								04			
"E _L ,M", "M,E _R ", "S ₁ /S ₂ ,E <mark>_/M"</mark>								`				
or " $M/E_R, S_3/S_4$ ".	4	(●`∀(☆`ω(★`Ⅲ(○`∇)				(∇ ´○]) 」	Ⅲ′★)	ω΄	☆)	¥	´●)

Π

IV. DATABASE STATISTICS

Table 1. Distribution of all types of unique areas for which occurrence statistics
 was calculated across all emotion types in the database.

areas	E_LME_R	S_1	B_1	S_2	$E_L E_R$	М	S_3	B_2	S_4
joy, delight	1298	1469		653	349	336	671		2449
anger	741	525		321	188	239	330		1014
sadness,	702	350		303	291	170	358		730
fear	124	72		67	52	62	74		133
shame, shyness	315	169		121	110	85	123		343
liking, fondness	1079	1092		802	305	239	805		1633
dislike	527	337		209	161	179	201		562
excitement	670	700		268	243	164	324		1049
relief	81	50		11	38	26	27		64
surprise, amazement	648	405		231	183	154	279		860
overall	6185	5169	-	298 6	192 0	1654	3192	-	8837

III. DATABASE OF EMOTICONS

Resource Collection Extract emoticons from 7 online emoticon dictionaries:

Face-mark Party, Kaomojiya, Kaomoji-toshokan, MANA Kaomoji-café, Kaomoji Paradise, Kaomojisyo Kaomoji Station

http://www.facemark.jp/facemark.htm, http://kaomojiya.com/, http://www.kaomoji.com/kao/text/, http://kaomoji-cafe.jp/, http://rsmz.net/kaopara/, http://matsucon.net/material/dic/, http://kaosute.net/jisyo/kanjou.shtml

2 Database Naming Unification

- The number of categories and nomenclature in the dictionaries was not unified.

-Processed all category names with ML-Ask [2] according to coherent classification of emotions based on Nakamura [4]. -Extracted 11,416 emoticons (10,137 unique ones, 89%). -Group by emotion type

Database Coverage

Unique raw emoticons = 10,137 Unique $E_{L}ME_{R}$ triplets = 6,185 unique pairs of eyes $E_L, E_R = 1,920$ Unique mouths M = 1,654All possible combinations of triplets $E_{I}, E_{R} \times M = 3,175,680$ possibilities

Unique raw emoticons (10,137) = 0.3% of full coverage Unique triplets (6,185) = 0.2% of full coverage.

Without our approach (kinesics) we loose 97% of possible coverage!

3 Extraction of Semantic Areas appearing in unique emoticons.

4 Annotation of Semantic Areas - Occurrence frequency of the area in the emotion type database was calculated for every triplet, eye pair and mouth.

- Automatic annotation according to the probability of emotion expression (occurrence frequency).

Input: ·°·(/Д`;)·°· Find match in raw emoticon database: $\cdot^{\circ} \cdot (/ \Pi^{\circ};) \cdot^{\circ} \cdot$ If no match, localize $E_{L}ME_{R}$ triplet in the $E_{L}ME_{R}$ triplet database: /Д` If no triplet found, look for any E_LME_R combination; If no combination matched, find any $E_L E_R$ or M from separate semantic area database: /;`, Д Localize emoticon borders B_1, B_2 : (,) Localize additional areas $S_1, S_2, S_3, S_4 : \cdot, \cdot, \cdot, \cdot$ Determine the emoticon structure: $S_1: \cdot^{\circ} \cdot$, $B_1: (, S_2:N/A, E_LE_R:$ /, M: \square , S₃:;, B₂:), S₄: \cdot °· Look for next emoticon;

CONCLUSIONS

We presented a description of a database of emoticons to be used in further research on affect analysis. The database contains over ten thousand of unique emoticons collected from the Internet. These emoticons are automatically distributed into emotion classes. The emoticons are divided into semantic areas (mouths or eyes). The division into semantic areas is based on Birdwhistell's [5,6] theory of kinesics.

The database will be used in emoticon analysis system. The database contains over ten thousand of raw emoticons and over 3 million of possible combinations covering most of the possibilities. Planned evaluation: 1) emoticon detection in a sentence; 2) emoticon extraction from a sentence; 3) division of emoticon into semantic areas; 4) emotion classification of emoticons.

REFERENCES

1.M. Ptaszynski, P. Dybala, W. Shi, R. Rzepka and K. Araki, "Towards Context Aware Emotional Intelligence in Machines: Computing Contextual Appropriateness of Affective States." In Proceedings of IJCAI-09, Pasadena, CA, USA, pp. 1469-1474, 2009. 2.M. Ptaszynski, P. Dybala, R. Rzepka and K. Araki, "Affecting **Corpora: Experiments with Automatic Affect Annotation System -**A Case Study of the 2channel Forum-," In Proc. of PACLING-09, Japan, 2009.

3.W. Shi, R. Rzepka and K. Araki, "Emotive Information Discovery from User Textual Input Using Causal Associations from the Internet," FIT-08, pp. 267-268, 2008.

4.A. Nakamura, Kanjo hyogen jiten, Tokyodo, 1993.

5.R. L. Birdwhistell, Introduction to kinesics: an annotation system for analysis of body motion and gesture. University of Kentucky **Press**, 1952.

^O^

6.R. L. Birdwhistell, Kinesics and Context. University of Pennsylvania Press, Philadelphia, 1970.