

CAO: A Fully Automatic Emoticon Analysis System

Michal Ptaszynski, Jacek Maciejewski, Pawel Dybala, Rafal Rzepka and Kenji Araki

Graduate School of Information Science and Technology
Hokkaido University

Presentation Outline

- Emoticons Definition
- Database Construction
- CAO Emoticon Analysis System
- Evaluation of CAO
- Conclusions and Future Work

Our working definition of emoticons...

Emoticons:

 Emoticons are representations of body language in online communication (more-less).

Therefore...

Emoticons:

 Are an important in part of communication [1,2] in online communities (blogs, forums, BBS, e-

mails, chat-rooms, etc.)

^{1.} Suzuki, N. and Tsuda, K. 2006. Automatic emoticon generation method for web community, WBC2006, pp. 331-334.

^{2.} Derks, D., Bos, A.E.R., von Grumbkow, J. 2007. Emoticons and social interaction on the Internet: the importance of social context, Computers in Human Behavior, 23, pp. 842-849.

Emoticons:

But sometimes are difficult to understand

Emoticons:

But somet

Need to analyze them effectively

- Can be roughly divided into:
 - 1-line Western (text-base or pictures)

- Can be roughly divided into:
 - 1-line Western (text-base or pictures)

- Can be roughly divided into:
 - 1-line Western (text-base or pictures)
 - 1-line Eastern

- Can be roughly divided into:
 - 1-line Western (text-base or pictures)
 - 1-line Eastern

- Can be roughly divided into:
 - 1-line Western (text-base or pictures)
 - 1-line Eastern
 - Multiline Eastern

- Can be roughly
 - 1-line Wester
 - 1-line Eastern
 - Multiline East

Emoticons:

- Can be roughly divided into:
 - 1-line Western (text-base or pictures)
 - 1-line Eastern
 - Multiline Eastern

We focused on these, because...

- Can be roughly divided into:
 - 1-line Western
- ← There already is some research+ we were a little more ambitious

- 1-line Eastern
- Multiline Eastern ← We are not that crazy

Emoticons:

- Can be roughly divided into:
 - 1-line Western
- ← There already is some research+ we were a little more ambitious

- 1-line Eastern
- Multili Eastern ← We are not that crazy

Only a little research done here

Some examples:

```
\(*^o^*)/
·°·(/Д`;)·°·
(;^_^A
(°. °)
(^ -)y--~
(。·_·。)人(。·_·。)
```

Some examples:

```
\(*^o^*)/
·°·(/Д`;)·°·
(;^ ^A
(°. °)
(^ -)y--~
(。'_'。)人(。'_'。)
```

Suddenly came inspiration!

Some examples:

```
\(*^o^*)/
·°·(/Д`;)·°·
(;^ ^A
(°. °)
(^ -)y--~
(。-_-。)人(。-_-。)
```

Suddenly came inspiration!

Since emoticons are representations of body language...

Some examples:

```
\(*^o^*)/
                        Suddenly came
·°·(/Д`;)·°
            A structural approach
(;^ ^A
              to body language
                                      s are
             could be applicable
(^ -)y--~
                                      s of
                 here as well!
(======Д==
(。'_'。)人(。'_'。)
```

Theory of kinesics:

- Non-verbal behavior is used in everyday communication systematically and can be described structurally.
- A minimal part = a kineme, the smallest meaningful set of body movements, e.g. raising eyebrows, etc.

Birdwhistell (1952, 1970)

Birdwhistell, R. L. 1952. Introduction to kinesics: an annotation system for analysis of body motion and gesture, University of Kentucky Press.

Birdwhistell, R. L. 1970. Kinesics and Context, University of Pennsylvania Press, Philadelphia.

- Theory of kinesics:
- Non-verbal behavior is communication system described structurally.
- A minimal part = a kine meaningful set of body raising eyebrows, etc.

Birdwhistell, R. L. 1952. Introduction to kinesics: a

motion and gesture, University of Kentucky Press.

Birdwhistell, R. L. 1970. Kinesics and Context, University of Pennsylvania Press, Philadelphia.

Some examples:

-0-	Blank-faced	\$ \$	Slitted eyes		
	Single raised	00	Eyes upward		
- 0	brow (indicates brow raised)	-0 0-	Shifty eyes		
_ <	Lowered brow	°∞ ∞″	Glare		
\/	Medial brow	€	Tongue in cheek		
	contraction	\sim	Pout		
*::	Medial brow nods	**	Clenched teeth		
~ ~	Raised brows		Toothy smile		
00	Wide eyed		Square smile		
- 0	Wink	\bigcirc	Open mouth		
O O	Sidewise look	$s \bigcirc L$	Slow lick—lips		
රා රා	Focus on auditor	$\delta \bigcirc\!\!\!\bigcirc r$	Quick lick—lips		
6 0 6 0	Stare	\approx	Moistening lips		
6	Rolled eyes	8	Lip biting		


```
\(*^o^*)/
   – Additional area:
   – Bracket:
   – Additional area:
   – Face:
   – Additional area:
   – Bracket:
   – Additional area:
                                        Assumption:
```

Emoticons could be analyzed by dividing them to areas (kinemes)!

Visited 7 online emoticon dictionaries:

- 1. Face-mark Party, 2. Kaomo-jiya,
- 3. Kao-moji-toshokan, 4. Kaomoji-café,
- 5. Kaomoji Paradise, 6. Kaomojisyo and
- 7. Kaomoji Station.

http://www.facemark.jp/facemark.htm, http://kaomojiya.com/, http://www.kaomoji.com/kao/text/,

http://kaomoji-cafe.jp/, http://rsmz.net/kaopara/,

http://matsucon.net/material/dic/,

http://kaosute.net/jisyo/kanjou.shtml

 Used an affect analysis system to select and categorize only emotion-related labels.

Ptaszynski, M., Dybala, P., Rzepka, R. and Araki, K. 2009. Affecting Corpora: Experiments with Automatic Affect Annota-tion System - A Case Study of the 2channel Forum, In *Proceedings PACLING-09, pp. 223-228*.

 Used an affect analysis system to select and categorize only emotion-related labels.

 Extract emotions only from labels related to emotions

\(*^o^*)/

 Obtained 10,137 unique emoticons classified with emotion types.

joy, delight	liking, fondness	anger	surprise, amazement	sadness, gloom	excite- cite- ment	dis- like	shame, shyness	fear	relief	Over- all	Emoticons
3128	1988	1238	1227	1203	1124	704	526	179	99	11416	All extracted
1972	1972	1221	1196	1169	1120	698	511	179	99	10137	Unique
63%	99%	99%	97%	97%	99%	99%	97%	100%	100%	89%	Ratio

- Automatically divide emoticons into:
 - Eyes [E]: ^ ^
 - Mouths [M]: o
 - Additional areas (inside emoticon) [S]: * *
 - Additional areas (outside emoticon) [S]: \ /

- We have a set of databases!
 - Raw emoticons
 - Triplets (E-M-E)
 - Eyes (E-E)
 - Mouths (M)
 - Additional (S)

\	(*	Λ	0	Λ	*)	/
1	1						/	/

-	joy, delight	liking, fondness	anger	surprise, amazement	sadness, gloom	excite-	dis- like	shame, shyness	fear	relief	Over-	Emoticons
-	3128	1988	1238	1227	1203	ment 1124	704	526	179	99	11416	All extracted
-	1972	1972	1221	1196	1169	1120	698	511	179	99	10137	Unique
_	63%	99%	99%	97%	97%	99%	99%	97%	100%	100%	89%	Ratio
	areas		E_LME_R	S_1	B_1	S_2	E_{L}	E_R	M	S_3	B_2	S ₄
	joy, d	elight	1298	1469		653	34	19	336	671		2449
	anger	•	741	525		321	18	38	239	330		1014
	sadne	SS,	702	350		303	29	91	170	358		730
	fear		124	72		67	5.	2	62	74		133
	shame shyne		315	169		121	11	0	85	123		343
	liking fondn	*	1079	1092		802	30)5	239	805		1633
	dislik	e	527	337		209	16	51	179	201		562
	excite	ment	670	700		268	24	13	164	324		1049
	relief		81	50		11	3	8	26	27		64
	surpr amaz	ise, ement	648	405		231	18	33	154	279		860
	overa	11	6185	5169	_	2986	192	20	1654	3192	_	8837

Already annotated with emotion types!

CAO – Emoticon Analysis System

Constructed CAO system for emoticon analysis with these databases.

CAO – Emoticon Analysis System

- Emoticon detection in (any) input
 - Use 455 characters most frequently (>10 times)
 appearing in emoticons (x₁,x₂,...x₄₅₅)
 - If (any three x appear in a row) {
 there is an emotion in input
 }

CAO – Emoticon Analysis System

- Emoticon extraction from input (+ affect analysis)
 - Three steps:
 - Looking for a "raw" emoticon (+checking emotion labels)

- Emoticon extraction from input (+ affect analysis)
 - Three steps:
 - Looking for a "raw" emoticon (+checking emotion labels)
 - Looking for a triplet (+checking emotion labels)

If no "raw" emoticon

- Emoticon extraction from input (+ affect analysis)
 - Three steps:
 - Looking for a "raw" emoticon (+checking emotion labels)
 - Looking for a triplet (+checking emotion labels)
 - Checking all combinations of triplets (eyes x mouth*)

(+checking emotion labels) Database of Database of eyes [ELER] Database of Input: User unique raw [ELMER] triplets utterance emoticons Database of mouths [M] [ELMER] [ELER] and [M] matched? matched? Emoticon detection (section 5.1) ΝО Rawemoticon matched? Result calculation (section 5.4) Affect Analysis Emoticon Output: Emoticon extraction form semantic areas **Analysis Result** input (section 4.3, 5.2)

If no triplet

*)Eyes=1,920 Mouths=1,654 All combinations:

ExM=3,175,680

- Emoticon extraction from input
 - Finally:
 - Extract additional areas (+checking emotion labels)

- Emoticon extraction from input
 - Finally:
 - Extract additional areas (+checking emotion labels)
 - Summarize scores (to determine emotion types statistically most probable for this emoticon)

- Test set
 - A large corpus of blogs from: Ameba Blog*
 - 354,288,529 Japanese sentences in
 - 12,938,606 downloaded and parsed web pages
 - written by 60,658 unique bloggers

- Randomly extracted 1000 middle-sized* sentences as the test set
 - 418 of those sentences included emoticons.
 - annotate the sentences with 42 people (10 sentences per 1 person)
 - Question: What emotion was expressed in the sentence?
 - annotate emoticons from the sentences (different samples than in sentences)
 - Question: What emotion could be expressed with this emoticon?
 - Answers (emotion type, random order): a) System's;
 b) Similar**; c) Completely different; d) Other (from the seven remaining);

Test Set Gold standard

- Estimation of:
 - Emotion types (10 types)
 - General emotive features (valence and activation)* adjusted to Japanese like in Ptaszynski et al.**

^{*)} Russell, J. A. 1980. A circumplex model of affect, J. of Personality and Social Psychology, 39(6), pp. 1161-1178.

^{**)} Ptaszynski, M., Dybala, P., Shi, W., Rzepka, R. and Araki, K. 2009. Towards Context Aware Emotional Intelligence in Machines: Computing Contextual Appropriateness of Affective States, In *Proceedings of IJCAI-09*, pp. 1469-1474.

Results

Detection					
		System			
		Emoticon	No emoticon		
Users	Emoticon	394	24		
	No emoticon	0	582		
No. of agreements=976 (97.6%) Kappa=0.95					

In 24/418 cases there were no 3 usual chars in a row

Results

Extraction						
\overline{R}	Р	F-score				
94.3%	100% (97.1%				
$\left(\frac{394}{418}\right)$	$\left(\frac{394}{394}\right)$	$2\frac{P*R}{P+R}$				

Errors only for the undetected emoticons

- Results
- Emotion Estimation on Separate Emoticons
 - Emotion types: 93.54%
 - General emotive features: 97.39%

Accuracy in determining probable emotion types a certain emoticon could be used to express

- Results
- Emotion Estimation on Sentences
 - Emotion types: 80.2%
 - General emotive features: 94.63%

Accuracy in determining emotion types expressed in a sentence, only with the use of emoticon*

*) a sentence needs to contain at least one emoticon

- Results
- Emotion Estimation on Sentences
 - Emotion types: 80.2%
 - General emotive features: 94.63%
- The results were
 worse because meaning in
 sentences is conveyed also
 through lexical channel;
 but,
- Results for general features
 were high → People
 sometimes misinterpret
 specific emotion type, but
 rarely valence/activation;

Accuracy in determining emotion types expressed in a sentence, only with the use of emoticon*

*) a sentence needs to contain at least one emoticon

Conclusions

- Presented a prototype system for automatic affect analysis of Eastern type emoticons, CAO.
- Inspired by Theory of Kinesics
- Gathered database of +10,000 emoticons and (almost) automatically expanded it to +3 mln.

Conclusions

- CAO is capable of:
 - Detecting emoticons in any input
 - Extracting emoticons form input
 - Dividing emoticons into semantic areas (eyes, mouths, etc.)
 - Estimating potential emotion types expressed by emoticons.
 - Affect analysis of sentences including emoticons
- CAO got almost ideal results in all tasks.

Future Work

Possible applications:

- Affect analysis/annotation of corpora
- Emotion detecting in online communication
 - Support for Internet messengers, blog services, forums, etc.
- Sentiment analysis (when looking only at valence)
- Detecting irony*

^{*)} Carvalho, P., Sarmento, L., Silva, M. J., and de Oliveira, E. 2009. Clues for detecting irony in user-generated contents: oh..!! it's "so easy";-). In Proceeding of the 1st international CIKM Workshop on Topic-Sentiment Analysis For Mass Opinion (Hong Kong, China, November 06 - 06, 2009)

Thank you for your attention!

Read more in: "A Fully Automatic Emoticon Analysis System Based on Theory of Kinesics"

Details on Extraction of Emoticon Areas

Determined all possible emoticon borders:

- Extract eye-mouth-eye triplets
 - Get rid of what is behind brackets
 (inclusively with brackets)
 - Get rid of additional areas from within emoticons (the only detail done manually)
- Make a database of emoticon triplets

- Extract eyes and mouths
 - If an eye has more than 1 character, both eyes are the same;

```
if (n characters from left and right
match) {n=eye};
ifelse (take n-1,n-2,n-3,...)
```

```
(*^{\circ}O^{\wedge}*)/
```


- Extract eyes and mouths
 - If an eye has 1 character, eyes could be the same or different;

```
else(
    take 1 char. from left and right as eyes;
    mouth is what is left inside;
)
```


- Extract additional areas
 - Localize and extract additional areas
 - Make database of additional areas

We have a database!

joy, delight	liking, fondness	anger	surprise, amazement	sadness, gloom	excite- cite- ment	dis- like	shame, shyness	fear	relief	Over- all	Emoticons
3128	1988	1238	1227	1203	1124	704	526	179	99	11416	All extracted
1972	1972	1221	1196	1169	1120	698	511	179	99	10137	Unique
63%	99%	99%	97%	97%	99%	99%	97%	100%	100%	89%	Ratio
areas		E_LME_R	S_1	\mathbf{B}_{1}	S_2	E_L	E_R	M	S_3	B_2	S_4
joy, d	elight	1298	1469		653	34	.9	336	671		2449
anger	•	741	525		321	18	8	239	330		1014
sadne	ess,	702	350		303	29	1	170	358		730
fear		124	72		67	52	2	62	74		133
sham shyne		315	169		121	11	0	85	123		343
liking fondn	*	1079	1092		802	30	5	239	805		1633
dislik	e	527	337		209	16	51	179	201		562
excite	ment	670	700		268	24	-3	164	324		1049
relief		81	50		11	38	8	26	27		64
surpr amaz	ise, ement	648	405		231	18	3	154	279		860
overa	11	6185	5169	-	2986	192	20 1	1654	3192	-	8837

Details on Affect Analysis of Emoticons

In: CAO – Emoticon Analysis System

- Emoticon affect analysis (along with extraction)
 - Emotion list extraction
 - For [1.]: Check emotion types annotated on raw emoticons

- Emoticon affect analysis
 - Emotion list extraction
 - For [1.]: Check emotion types annotated on raw emoticons
 - For [2.]: Check emotion types annotated on triplets

- Emoticon affect analysis
 - Emotion list extraction
 - For [1.]: Check emotion types annotated on raw emoticons
 - For [2.]: Check emotion types annotated on triplets

 For [3.]: Check emotion types annotated on separate ExM combinations

- Emoticon affect analysis
 - Finally
 - Check emotion types annotated on additional areas

- Emoticon affect analysis
 - Finally
 - Check emotion types annotated on additional areas
 - Summarize score

 Give output: list of emotions most probably expressed with this emoticon

Summarizing scores

In: Evaluation of CAO

- Summarizing scores
 - Occurrence
 - Sum of all emotion types found for all elements
 - Frequency
 - Sum for each element divided by number of all elements in each database
 - Unique frequency
 - Sum for each element divided by number of unique elements in each database

Detailed Description

- Training Set*
- Raw emoticon $\frac{1972}{63\%} \frac{1972}{99\%} \frac{1221}{99\%}$ database (Tr.S. gold standard)

joy, delight	liking, fondness	anger	surprise, amazement	sadness, gloom	excite- cite- ment	dis- like	shame, shyness	fear	relief	Over- all	Emoticons
3128	1988	1238	1227	1203	1124	704	526	179	99	11416	All extracted
1972	1972	1221	1196	1169	1120	698	511	179	99	10137	Unique
63%	99%	99%	97%	97%	99%	99%	97%	100%	100%	89%	Ratio

- Take emoticon from a database (e.g. from "joy")
- Process
- Check result with gold standard

*) In training set evaluation we matched only triplets and all possible; matching also raw would give all 100%

- Training Set*
- Raw emoticon database (Tr.S. gold
 - Take emoticon from a
 - Process
 - Check result with gold standard
 - Ranking:
 - 1. Occurrence
 - 2. Unique Frequency
 - 3. Frequency

(differences not significant=all equally good)

	Emotion type	CAO: Occur- rence	Freq- uency	Unique Freq- uency
	anger	0.811	0.771	0.767
	dislike	0.631	0.800	0.719
a ¯	excitement	0.786	0.769	0.797
	fear	0.451	0.936	0.858
	fondness	0.915	0.778	0.783
	joy	0.944	0.802	0.860
	relief	0.600	0.990	0.985
,	shame	0.706	0.922	0.910
	sorrow	0.814	0.809	0.791
	surprise	0.862	0.866	0.874
-	All approx.	0.852	0.804	0.818

- Test set
 - A large corpus of blogs from: Ameba Blog*
 - 354,288,529 Japanese sentences in
 - 12,938,606 downloaded and parsed web pages
 - written by 60,658 unique bloggers
- Randomly extracted 1000 middle-sized** sentences as the test set
 - 418 of those sentences included emoticons.

Test Set Gold standard

- annotate the sentences with 42 people (10 sentences per 1 person) Question: What emotion was expressed in the sentence?
- annotate emoticons from the sentences (different samples than in sentences)

Question: What emotion could be expressed with this emoticon?

- *) www.ameblo.co.jp
- **)20-50 characters in Japanese

- Estimation of:
 - Emotion types (specific)
 - General emotive features (valence and activation)* adjusted to Japanese like in Ptaszynski et al.**

^{*)} Russell, J. A. 1980. A circumplex model of affect, J. of Personality and Social Psychology, 39(6), pp. 1161-1178.

^{**)} Ptaszynski, M., Dybala, P., Shi, W., Rzepka, R. and Araki, K. 2009. Towards Context Aware Emotional Intelligence in Machines: Computing Contextual Appropriateness of Affective States, In *Proceedings of IJCAI-09*, pp. 1469-1474.

Results

Detection							
System							
		Emoticon	No emoticon				
Users	Emoticon	394	24				
	No emoticon	0	582				
No. of agreements=976 (97.6%), Kappa=0.95							

Results

Extraction								
\overline{R}	Р	F-score						
94.3%	100%	97.1%						
$\left(\frac{394}{418}\right)$	$\left(\frac{394}{394}\right)$	$2\frac{P*R}{P+R}$						

Results

Emotion Estimation on Separate Emoticons

CAO									
Occurrence		Frequ	uency	Unique Frequency 😃					
Types	2D space	Types	2D space	Types	2D space				
0.891472	0.966778	0.934319	0.971044	0.935364	0.973925				

Emotion Estimation on Sentences

CAO									
Occui	rrence	Freq	uency	Unique Frequency					
Types	2D space	Types	2D space	Types	2D space				
0.755171	0.908911	0.800896	0.940582	0.802012	0.946291				

- 1. Unique Frequency
- 2. Frequency
- 3. Occurrence

Comparing CAO to other systems

In: Evaluation of CAO

Comparing CAO to other systems

$egin{aligned} \mathbf{Research} & o \ (\mathbf{approach}) \ \mathbf{Capability} \ \downarrow \end{aligned}$	Tanaka et al. (2005) (kernel methods)	Yamada et al. (2007) (n-grams)	Kawakami (2008) (database)	CAO (theory of kinesics)
1. Detection whether input equals emoticon	×	×	Х	O
2. Detection of emoticon in sentence input	O (included in 3.)	X	Х	0
3. Extraction of emoticon from any string of characters	0	X	Х	0
4. Division into semantic areas	X	×	×	0
5. Database coverage	1,075	693	31	10,137 (expanded automatically to over 3 million)
6. Classification of emotion types	6 types (BBS-based;	7 types Subjective (Subjective)	6 types (Subjective)	10 types (Language/ Culture Based)
7. Emotion esti- mation of separate emoticons	O (included in 8.)	0	0	0
8. Affect Analysis of sentences with emoticons	О	×	Х	0

- Comparing CAO to other systems
 - In Training set:Comparison with Yamada et al. (2007)

Upgraded with our database and emotion classification

Comparing CAO to other systems

In Training
set:
Comparison
with Yamada
et al. (2007)
(their best <
our worst)

E 4:	Yamada et al (2007)			CAO:		Unique
Emotion type	1-	2-	3-	Occur-	Freq-	Freq-
турс	gram	gram	gram	rence	uency	uency
anger	0.702	0.815	0.877	0.811	0.771	0.767
dislike	0.661	0.809	0.919	0.631	0.800	0.719
excitement	0.700	0.789	0.846	0.786	0.769	0.797
fear	0.564	0.409	0.397	0.451	0.936	0.858
fondness	0.452	0.436	0.448	0.915	0.778	0.783
joy	0.623	0.792	0.873	0.944	0.802	0.860
relief	1.000	0.999	1.000	0.600	0.990	0.985
shame	0.921	0.949	0.976	0.706	0.922	0.910
sorrow	0.720	0.861	0.920	0.814	0.809	0.791
surprise	0.805	0.904	0.940	0.862	0.866	0.874
All approx.	0.675	0.751	0.802	0.852	0.804	0.818

T. Yamada, S. Tsuchiya, S. Kuroiwa, F. Ren, "Classification of Facemarks Using N-gram", International Conference on NLP and Knowledge Engineering, pp. 322-327, 2007.

- Comparing CAO to other systems
 - In Test set: their best < our worst (or 2nd worst)

	Emotion Estimation on Separate Emoticons									
Ya	mada et al. (20	007)	CAO							
1 gram	2 gram	3 gram	Occur	rence	Frequ	iency	Unique Frequency			
1-gram	2-gram	3-gram	Types	2D space	Types	2D space	Types	2D space		
0.721347	0.865117	0.877049	0.891472	0.966778	0.934319	0.971044	0.935364	0.973925		
			Emotion	Estimation on	Sentences					
Ya	mada et al. (20	007)			CA	10				
1 gram	2 gram	3 gram	Occur	rence	Frequ	iency	Unique Frequency			
1-gram	2-gram	3-gram	Types	2D space	Types	2D space	Types	2D space		
0.685714	0.797659	0.714819	0.755171	0.908911	0.800896	0.940582	0.802012	0.946291		

T. Yamada, S. Tsuchiya, S. Kuroiwa, F. Ren, "Classification of Facemarks Using N-gram", International Conference on NLP and Knowledge Engineering, pp. 322-327, 2007.

Statistical significance of results

Statistical significance or differences in training set evaluation

Emotion	Yamada (et al (2007) i	mproved	CAO:	Unique		Unique	
type	1-gram	2-gram	3-gram	Occurrence	Frequency	Frequency	Position	Position
anger	0.702	0.815	0.877	0.811	0.771	0.767	0.476	0.476
dislike	0.661	0.809	0.919	0.631	0.8	0.719	0.556	0.591
excitement	0.7	0.789	0.846	0.786	0.769	0.797	0.56	0.516
fear	0.564	0.409	0.397	0.451	0.936	0.858	0.652	0.671
fondness	0.452	0.436	0.448	0.915	0.778	0.783	0.46	0.389
joy	0.623	0.792	0.873	0.944	0.802	0.86	0.522	0.421
relief	1	0.999	1	0.6	0.99	0.985	0.599	0.621
shame	0.921	0.949	0.976	0.706	0.922	0.91	0.538	0.566
sorrow	0.72	0.861	0.92	0.814	0.809	0.791	0.553	0.52
surprise	0.805	0.904	0.94	0.862	0.866	0.874	0.52	0.523
All approx	. 0.675	0.751	0.802	0.852	0.804	0.818	0.517	0.469
	X	Y	Z	А	В	С		

XvsY	not sign	AvsB	not sign
XvsZ	not sign	AvsC	not sign
YvsZ	not sign	BvsC	not sign

In most cases differences were not significant (results equally good).

	A	В	С
X	N	Y (<5%)	Y (<5%)
Υ	N	Ν	N
Z	N	N	N

This means that although in training set Occurrence scored higher, Freq and UniqFreq were more probable to achieve better results in test set evaluation.