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ABSTRACT LANGUAGE COMBINATORICS
In this research we focus on automatic extraction of patterns from emotive SPEC — Sentence Pattern Extraction arChitecture (2]
(emotionally loaded) sentences. We assume emotive sentences stand out both Sentence patterns = ordered non-repeated combinations of sentence elements.
lexically and grammatically and verify this assumption experimentally by " ol
comparing two sets of such sentences. We use a novel pattern extraction For 1<k<n,thereis ( ) = 7 ' all possible k_long patterns, and
method based on the idea of language combinatorics. Extracted patterns are k ki(n — k)!
applied in a text classification task of discriminating between emotive and non- n ' ' '
emotive sentences. The method reached balanced F-score of 76% with Precision Z (”) _ T | U R T _ o _ 1
equal to 64% and Recall 93%. k '(n—1)!  2l(n — 2)! nl(n —n)!
k=1
PROBLEM DEFINITION Normalized pattern weight w; = ( Opos 0.5) K 2
Opos _I‘ Oneg

SHIZTATREFEBWLWWHAZZ AT | (What a pleasant day today, isn't it?)
This sentence contains a pattern:
RAT*xZATE ! (Whata *isn'tit?)

1. This pattern cannot be discovered with n-gram approach. EXPERIMENT SETUP

Score for one sentence

score = E w;i, (1 > w; > —1)

2. This pattern cannot be discovered if one doesn’t know Preprocessing
what to look for.

Need to find a way to extract frequent patterns from corpora.

Sentence: |4 BHEBHBATEELBVVEHBATR !
Transliteration: Kyowanantekimochiiihinanda!

NEREEGEE \What a pleasant day it is today!

DATASET  |preprocessingexamples
IRCYERE K6 wa nante kimochi i hi nanda !

91 sentences close in meaning, but different emotional load 2. POS: N TOP ADV N ADJ N COP EXCL

(50 emotive, 41 non-emotive) gathered in an anonymous survey Kyé[N] wa[TOP] nante[ADV] kimochi[N] iifADJ] hi[N] nanda[COP]
on 30 people of different background (students, businessmen, ' N ![EXCL]

housewives).

Emotive Non-emotve : e : : . . :
N N N Pattern List Modification Weight Calculation Modifications
Examples: =TSN BELEEHTY. |
' Takasugiru karane Kougaku natame desu. 1. All patterns 1. Normalized
'‘Cause Its just too expensive Due to high cost. 2. Zero-patterns deleted 2.  Award length
FTKENWGBIZGHD ShiVEETY 3. Ambiguous patterns deleted 3. Award length and occurrence
Sugoku kirel naumi da naa Kirei naumi desu
Oh, what & beautiftitSEa: SuiiiEE All patterns vs. only n-grams | | Automatic threshold setting |

BALHDOA. RIBETE0LE  HOBLREETILLLTT
Nanto ano hito, kekkon suru rashii yo Ano hito kekkon suru rashii desu
Have you heard? She’s getting married! They say she is gatting married.

10-fold Cross Validation

EVALUATION EXPERIMENT
RESULTS

« Token+PQOS > Tokenized > POS -> algorithm works
better on specific elements than more generalized
« Patterns > N-grams (sometimes n-grams get better Precision)

EXAMPLE SENTENCES

DETAILED ANALYSIS

« Length awarded > normalized weight Extracted patterns =xample 1. .
+ Highest results F-score = 0.76, Precision = 0.64, Recall = 0.95 Tokenized AL ECRBOIEAIL,
‘ N St : (Tokenized) Megane, soko ni atta n da yo .
 SPEC slightly worse t‘han ML-Ask [3] (F=0.79,P=0.8, R=0.78) . . (The glasses were over there!)
« SPEC - fully automatic > ML-Ask — handcrafted Emotive Non-emotive Example 2.
example example 55k, BELAEZRE
: freq. freq. v TEEA IR RS e
Tokenized TokenF_s + POS G pattern d pattern Uun, butai ga mienai yo .
e——— —_— 14| . * 1= 11 LNk, (Ooh, | cannot see the stage!)
= - A T - T T 12| T 8 L *, Example 3.
@1l . 11 A k., 7 T3, HH., BEMNDLT L=, %
% s | {osh natterns 11 & 6 [k T9 Aa, On?ka ga suita yo .
c more effective better than 17 — 6 = L (Ohh, I'm so hungry)
- 0. - B / . lo)
s el 10 . kfk, 5 ELE, || pamPes
c | SEELR - T,
= 0 9. *& 5 F¥F Kougaku na tame desu.
[= 2N 9. *A o W Due to high cost.
é’ 8 L 4 TY %, Example 5.
0.6 1 7| 7E 0 3 CcOX[X*k, | ZThunggcd
7 3 &k TH, Kirel na umi desu ,
E 6 Ak k& 3 T*xFEF This iIs a beautiful sea
= . 6 . k7 3 Ak, Example 6.
s - higher results 6 & 3 Kono hon wa totemo kowal desu . )
= ,, -2 — This book is very scary.
— 0.4 i x 5 = * o 2 7-: * S * o
= . = Example 7.
e . 5 [S* & Z) SEEENKE->TOET.
4 | e srans_Lengih-anaraed - O | ngrene 1Rk n varacdioroaclotod 5 Ak K 2 M Kyou wa yuki ga futte imasu. ,
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