
public void run() {
 if(this.getNote()>0) this.score/=2;
 else this.score++;
 if(rand.nextFloat() < keepInLife) return;
 this.died();
}

A Framework for Multilingual Real-time Spoken
Dialogue Agents

Arnaud Jordan and Kenji Araki
Graduate School of Information Science and Technology

 Hokkaido University
Sapporo, Japan

{arnaud, araki}@media.eng.hokudai.ac.jp

Abstract—In this paper, we propose a framework for a
spoken dialogue agent that is not dependent on any specific
language; it takes some dialogues and sentences as training sets
and uses them to acquire knowledge about the target language,
then it uses this knowledge to generate several possible responses
corresponding to the user input and finally it uses a simple score
method to select the best one to show to the user. In aim to be
language independent the system only uses very basics treatments
and combines them to generate the output sentences. Moreover,
all the learning and generation processes are realized in
independent threads making the system enable to generate the
outputs in real-time. Concretely, the user can input a new
sentence at any time and influence the current output generation.
We carry out experimentation in two grammaticality different
languages and got some results proving our system is efficient to
generate responses of a simple dialogue.

Keywords—spoken dialogue agent, multilingual, multi-thread,
real-time, machine learning, natural language processing

I. INTRODUCTION
Nowadays, many spoken dialogue agents have been

proposed. Most of them focus on one language and use
language specific resources such as grammar rules, word
relation database like WordNet[1] or morphological analysis
tools such as Juman[2] for Japanese. Many algorithms using
those kinds of resources have been proposed and some of them
can handle very pleasant dialogue such as ALICE[3]. We also
developed some agents[4][5], which are only available for
Japanese. Nevertheless, the most frequently used resources are
available in different languages. In consequence, the same
system can be adapted to different languages using specific
resources for each of them[6]. In this case the system is
multilingual, but cannot be adapted easily to language for
which the used resources are not available.

However, humans are able to learn and to speak any
language even if they do not know some basic grammar rules
or word functions such as articles especially in the case of their
native language. They can also choose to transgress some rules
to make sentence more natural. They just need to be immersed
in a specific language to learn it. That is why; we consider that
an algorithm can generate correct responses without any use of
language specific grammar concepts, but only using statistical
relations. Concretely, to create a more human like system we
developed a framework for multilingual spoken dialogue agent,
which can generate outputs in any language. As language

resources, the framework only uses dialogue samples and
sentence corpus without any language related annotations. In
addition, the framework implements a highly threaded
approach to make it real-time. Each treatment is realized in a
specific thread and in parallel to other treatments.

In the second section of this paper, we explain the
framework’s outline. Then, we present the settings and the
results of the experimentation we carried out. Finally, we
conclude about drawbacks and future development of the
presented framework.

II. OUTLINE
One of the main aims of the framework presented is to be

language independent. In consequence, it uses no language
specific grammar rule sets, dictionaries or morphological
analysis tools, but it directly acquires the needed knowledge
from two resources, dialogue samples and sentence corpus.

This framework is called MRDF in the next sections.

A. Data management
In aim to develop a real-time system, the user input and the

data generated from it have a lifespan and finished by
disappeared. Concretely, each element have 50% chances to be
removed after a definite time, which is called the lifespan time.

In addition, to be able to evaluate and to select useful
element, each of them has a score value. This value decreases
with the time and tend to fluctuate between 0 and 1. This
fluctuation is a kind of Zero-point energy used to make system
livier. If the score is under 1, the element cannot be accessed.

Fig. 1 shows the implementation in Java1 of the data
lifespan.

Fig. 1. Implementation of the data lifespan’s process

1 http://java.sun.com

24

In addition, the system also saves the ancestors of all the
elements for some optimizations and simplifications purpose
(cf. II.B.2). The ancestors are the elements from which the
element has been generated.

1) Data access
In the framework, data are not sorted and never compared

each other; the only way to access an element is to ask the
system to provide a randomly selected one. However, an
element with a higher score is selected more often than a one
with a lower score, a score of 0 makes the element not
accessible.

B. Basic treatments
We identify 5 basics treatments to generate a response. All

the outputs of MRDF are generated while combining them. We
list them below.

1) Splitting
It consists in generating sub-element of an initial element.

This treatment is similar to a morphological analysis.
Nevertheless, the system does not know any information about
the language it treats; it cannot identify the different words of
the sentence. In consequence, it has to split an element using
the knowledge it acquired previously. Concretely, it uses the
dialogue samples as initial cutting points. For example, if we
teach the system the two following sentences “I like cookies”
and “I like”, the system can use the second to split the first and
get the two substrings “I like ” and “cookies”. Then, if the
system does this process continuously and uses the newly
generated substrings as cutting points it can learn many
substrings, which can be used to split the user input.

The generated sub-elements’ score is equal to the initial
element, but their lifespan is half of it.

In addition, when an element is split into two or three sub-
elements, the system acquires a relation between them. For
example, when the string “Now I prefer dog.” is split using the
string “I prefer”, the system acquires the two relations {“Now”,
“I prefer”} and {“I prefer”, “dog”}. Those relations are
equivalent to a bigram[7]. Moreover, the system also acquires
two substitution rules (cf. II.B.3).

2) Merging
It is the opposite of the splitting process, merging consist in

merging two elements into one. To avoid meaningless merging,
the system only merges two pairs, which was results of a
splitting (which are related) such as “I like “ and “cookies”.

Merged elements’ score and lifespan are the means of the
two proceeded elements.

a) Ancestor
Splitting and merging are two opposite treatments, merging

two elements generated from the same initial element is not
useful and create duplicate element, to avoid this kind of
process, the system checks if the merging result is one of the
ancestors of one of the two elements merged, if it is the case,
they are not merged.

3) Substitution
Substitution changes one element into another without

removing the first one. The aim of the substitution is to
represent the connection between different conceptual entities.
We think it is a similar process to the association[8] in
psychology. All concepts are related through substitutions. For
example, “Strawberry” can be related to “are tasty”. In
consequence, if the dialogue contains the string “Strawberry”,
the system will generate the string “are tasty”. If other
treatments tend to generate “are tasty”, the system will have
more chance to access this element, merge it with “Strawberry”
and finally select the sentence “Strawberry are tasty” as the
output.

The score and the lifespan of the substituted element are the
half of the original one.

Besides, in a similar way as graph clustering[9], this
relation can be used to discover words clusters. For example,
the word “animal” will tend to have many substitutions to
animal words like “cat” or “dog” and other related words like
“elevate”. In consequence, if the question is “What animal do
you like?”, the interrogative pronoun “what” will be substituted
to many different words, but “animal” and “like” substitutions
will create two sets of words and we suppose the intersection
of this two sets will be a good answer such as “cat” or “dog”.

a) Pack
 Some substrings such as “?” are very frequent and generate

many substitutions2, which are often not valuable for the output
generation. To solve this problem, we implement a similar
method as the tf–idf method[10]. The system ponders the value
of each substitution, more an element is rarely substituted more
it is valuable. Concretely, all substitutions of the same element
are put in the same pack, which has the same access rate as a
unique element.

4) Voting
To select and identify the most valuable element, the

system attaches them a score, voting consists in increase the
score of an element, which matches some criterions such as an
element, which matches a previously acquired knowledge.

5) Selecting
Selecting is the most important phase of the output

generation; it selects which element to output and show to the
user. If an element is selected, it will be removed from the
system to avoid multiple selections of the same element.

Moreover, to avoid incorrect sentence’s outputs, we do not
allow any output, which is not contained in the sentence corpus.
However, in the case of a complete implementation of a spoken
dialogue agent the system have to allow some outputs which
are not present in a corpus, but which can be considered as
correct. For example, if there are two samples “Cats are
animals” and “Animals are living beings”, the system must be
able to generate the output “Cats are living beings” even if the
sentence is not present in the sentence corpus. Nevertheless, for
this paper experimentation we limit to corpus exact match.

1 The question mark is related to all question of the corpus.

25

<Silence>
U1: Let’s speak about your hobbies.
U2: I like reading.
<Context clear>
U1: Is it good?
U2: It is good.

.. Time.

Trigger

.
output

.
output

.
output

.
output

a) Trigger
The selecting process asks the system for a random element

and if its score exceeds a trigger value, the system will output it.
In aim to create a real-time system, like a human the system
has to reply in a minimum of time, but with a maximum of
pertinence. To produce this kind of behavior the system uses a
dynamic trigger, which value decrease in function of the time
spent. Fig. 2 shows an example of the trigger evolution.

Fig. 2. Example of the trigger evolution

After the system selected an output, the trigger value is
reinitialized. This value is calculated using (1). Concretely, the
system uses the mean of the last five outputs trigger value to
calculate the new trigger value. This method let the system
adapts to the elements’ score automatically.

€

Vi = (Vk) /5*2
k= i−5

i−1

∑ (1)

• V: value of the trigger

• i: output number

C. Parallel processing
All basics treatments are performed in a specific thread. In

consequence, the system is composed of more than thousand of
threads; to deals with this lot of processes we used the Java
Executor API3 thread pool to limit the number of effective
threads.

The agents can access one or several existing data and also
create new data. For example, an agent can access the two data
“Today is ” and “Monday” to generate the new data “Today is
Monday”. This process will not block any other process that
will be executed at same time.

No treatment is considered more important than another
one; we let the system choose the best combination of rules by
combining them randomly. We consider this behavior like a
kind of intuitive and experiential processing. The merit of this
behavior is to have a high fault tolerance, even if an error
occurs the output generation will continue proceeded by other
agents. Moreover, adding and removing a process do not
require modifying existing processes.

2 http://docs.oracle.com/javase/tutorial/essential/concurrency/exinter.

html

1) Sleeping time
Acquiring splitting and substitution rules are time and

computation consuming. That is why the system stops this
process when it receives an input and allows all the capacities
to the output generation. If there is not any input to proceed,
the system will enter in sleeping time and start treatments to try
to acquire new knowledge from previously acquired sentences.
This learning process is continuously proceeded.

D. Training samples
Our system uses no language specific processes or

resources. Nevertheless, it uses two kinds of training set,
dialogue samples and knowledge samples. These resources
only contain natural language sentences and some tags about
the environment, but no information about the language itself.

The number of agent increase in function of the size of the
training samples

1) Dialogue samples
The dialogue samples contain some very simple dialogues

used to acquire substitution and splitting rules in the target
language. Moreover, the dialogue samples contain some tags
about the conversation’s environment. They are used to make
the conversation livelier and to facilitate the real-time output
generation. We list those tags in the next sections. Fig. 4 shows
an example of dialogue samples containing some tags.

Fig. 3. Example of dialogue sample

a) User
The User tag4 indicates which user said the sentence; some

sentences are responses to another user and others follow the
same user previous sentence.

b) User entrance
To make the system livelier, we want it to be able to

display a sentence after the user enters in the chat room, but
before he inputs anything. To implement this behavior, the
system generates a User entrance tag when the dialogue starts.

c) Context clear
Dialogue samples do not contain only one dialogue

example, but several dialogues. In consequence, the system has
to be informed when the dialogue changes to not create any
link with the previous dialogue, which is over and has no
relation with the newly starting dialogue. The Context clear tag
is used to indicate this situation.

3 “U1” and “U2” in Fig. 4.

26

Input: Do you like drinking milk?
Splitting: {“Do you like”, “drinking milk?”, “drinking
milk”, “?”, ...}
Substitution: {“I like”, “I do not like”, ...}
Merging: {“I like drinking milk”, “I do not like
drinking”, ...}
Voting: {“I like drinking milk”}
Selecting (output): I like drinking milk

Tu aimes le chocolat ? → J’aime le chocolat
Choko ga sukidesu ka? → Choko ga sukidesu
(Do you like chocolate? → I like chocolate)

d) Silence
Silences are an important part of a dialogue and in

consequence have to be indicated to the system when they
happen. This information can be used to generate an output
having for aim to continue the dialogue with the user such as
“Let’s speak about your hobbies.” when a silence occurs.

e) Reflection
When many substitutions occurred in the system, we

consider it in reflection phase and a Reflection tag is generated.
This tag can be substituted to some interjections indicating the
reflection’s process. For example, “err” can be outputted to
indicate that the system is thinking and need more time before
answering.

f) Void
In opposition to the Reflection tag, the Void tag indicates

the system is not thinking and is not generating any sentence.
This information can be used to indicate the user to not wait
any supplementary output.

2) Knowledge acquisition
The dialogue samples contain a sentence and one

corresponding correct response. Using these two sentences the
system can acquire more substitution rules. For example, the
sentence “Do you like coffee?” and the response “I like coffee”
can be used to generate the substitutions {“Do you like”, “I
like”, “?”, “I like”}, which are essential for question answering.

3) Knowledge samples
The knowledge sample is a simple sentence corpus without

any tag. It contains some basic knowledge and it is used to
acquire some substitution rules and for selecting the output.

III. EXAMPLE OF THE OUTPUT GENERATION
As explained above, for this research we aim to generate

sentences, which can match a sentence present in a sentence
corpus. The output generation processes are all executed at the
same time. However, Fig. 5 shows the output generation
processes main phases in a logical order.

Fig. 4. Example of the output generation process

The generation process does not stop after outputting the
first response, but continues while the system contains data
generated from the user input. That is why the system can
output several responses to one single question. In addition,
during this process the user can input other sentences, which
will be aggregated to the currently processed data and influence
the output results.

IV. LANGUAGE DIFFERENCE
In language like English or French, the subject of the

sentence is explicitly indicated for example using “you” or “I”.
However, in Japanese this subject is generally implicit. In
consequence, to generate a response to a question in Japanese,
often only one splitting removing the question marker part is
needed, but in French one splitting, one substitution and one
merging is needed. Fig. 6 is an example of this situation. In
Japanese, the output is equal to the input removed from “ ka?”.

Fig. 5. Example of a simple question in the two target languages

V. EXPERIMENTATION
The system developed is only a base framework and does

not have for objective to be better than a system, which focus
only on one or several languages. The objective of the
experimentation we carried out is to prove that the same system
can generate natural responses efficiently in several languages
using the same basic treatments. Concretely, the system uses
the rules it acquired from dialogues and knowledge samples to
generate an output.

We think any spoken dialogue agent has to objective to
generate an output, which matches some patterns to be
considered as correct. More the system is developed more these
patterns become complicated and can contain meta-model or
sets of possibilities. That is why, for our framework first
evaluation we choose to use the simplest pattern, which is
complete correct sentence.

As baselines we use a similarity-based system in a similar
way as Murata’s system[11]. However, the proposed system
uses some Japanese grammar particularities to calculate the
similarity between two strings. In our case, we had to use
generic string similarity algorithm to be applicable for any
language. Concretely, we use Jaro-Winkler[12] and
Levenshtein[13] distance algorithm. We consider them as the
most frequently used distance. The baseline systems select as
output the sentence present in the knowledge corpus, which is
the closest to the input. We use the Java SimMetrics 5
implementation of these two algorithms.

In the next part of the paper, the baseline system using the
Jaro-Winkler distance will be called J-W baseline and the
system using the Levenshtein distance is called L baseline.

A. Preparation of the experimentation
First, we prepare sets of inputs and outputs in the two target

languages, Japanese and French. Those sets can have a big
influence on the experiment result; that is why we selected a
very simple and common sentences set for. Moreover, MRDF
is not able to treat more complex input yet. The Japanese
sentences are directly extracted from our pervious research[13]

4 http://sourceforge.net/projects/simmetrics/

27

Japanese input: Anata wa nani ga sukidesu ka? (What do
you like?)
Output 1: Watashi wa konbu ga sukidesu (I like kombu)
Output 2: Gyūdon ga sukidesu (I like gyūdon)
Output 3: Barē ga sukidesu (I like volleyball)
French input: Tu aimes quoi ? (What do you like?)
Output 1: Je mets du poivre (I put pepper)
Output 2: J'aime (I like)
Output 3: J'aime les fruits (I like fruits)
)

Japanese input: Anata wa nani ga sukidesu ka? (What do
you like?)
Output 1: Watashi wa konbu ga sukidesu (I like kombu)
Output 2: Gyūdon ga sukidesu (I like gyūdon)
Output 3: Barē ga sukidesu (I like volleyball)
French input : Tu aimes quoi ? (What do you like?)
Output 1: Il y a des oursins (There are urchins)
Output 2: Je n'aime pas la soupe (I do not like soup)
Output 3: Je mets du poivre (I put pepper)

Japanese input: Anata wa nani ga sukidesu ka? (What do
you like?)
Output 1: Mizu ga sukidesu (I like water)
Output 2: Sukidesu (I like)
Output 3: Gyūdon ga sukidesu (I like gyūdon)
Output 4: Shokudō no karē ga sukidesu (I like the curry of
the cafeteria)
French input: Tu aimes quoi ? (What do you like?)
Output 1: J’aime manger (I like eating)
Output 2: J'aime le curry de la cafeteria (I like the curry of
the cafeteria)

experimentation dialogues. In this research, the subjects had to
ask some questions and if the system cannot answer it, they had
to teach the correct answer. We select the questions and the
answers taught by the subjects to create the experimentation
input set and the knowledge samples. However, we avoid
“Yes” and “No” responses, which are too vague and could be
used to answer most of the question of the corpus. The French
sentences are manually translated from the Japanese one. Both
sets contain the same knowledge, but are not literal translation
to make the system outputs as natural as possible.

The dialogue samples used for the experimentation are
constituted of about 20 simple manually created dialogues.

B. Experimentation settings
Using our system and the baseline we generated responses

for 100 inputs. Table I shows some information about the
inputs and dialogues used for the experimentation.

TABLE I. EXPERIMENTATION SETTINGS

 Japanese French

Question and response 23 21

Input number 100 100

Question number 92 91

Output number 82 84

Number of word 552 526

To determine if an output is correct we ask subjects to
evaluate the generated responses. The subjects were native
speakers of the system target languages. The Table II shows
some information about the subjects. A response is considered
as correct if more than 3 subjects evaluate it as correct.

In addition, we also evaluate the number of consecutive
correct responses of each system. Concretely, the subjects note
the numbers of responses they think are correct starting with
the first response.

TABLE II. SUBJECT’S INFORMATION

Number

Language Japanese French

Subject 5 5

Male 3 2

Female 2 3

Student 1 3

Worker 4 2

Average age [year] 26.6 22.2

C. Results
The three figures below, Fig. 5, Fig. 6 and Fig7 show

examples of the generated outputs of MRDF and the two
baselines in Japanese and in French. MRDF generated a

variable number of outputs in function of the input and the
knowledge it acquired previously. Of course, the system can be
set to output more or less outputs, but the ratio of correct
responses decreases more outputs are numerous. For the two
baselines we only wrote the first 3 outputs.

Fig. 6. Example of responses generated by MRDF

Fig. 7. Example of responses generated by the J-W baseline

Fig. 8. Example of responses generated by the L baseline

On the previous examples, Fig. 8 and 9, we can see that in
Japanese the two baselines select the same responses. However,
in French the outputs are a little different. We think it is
because of the different sentence structure and writing system
between the two languages.

The Table III contains the results of the experimentation for
MRDF and the baselines in the two target languages. To
calculate the number of consecutive correct responses we only
count consecutive responses starting with the first one, which
was evaluated as correct by more than 3 subjects. For example,
for the French experimentation of MRDF, we got 70 correct
first responses, 12 correct second responses and 2 correct third

28

TABLE III. EXPERIMENTATION RESULTS

Language Japanese French

System J-W baseline L baseline MRDF J-W baseline L baseline MRDF

Total number of responses 8200 8200 172 8400 8400 181

Rate of first correct responses [%] 55.0 58.0 72.0 48.0 56.0 70.0

Rate of consecutive correct responses [%] 64.0 77.0 83.0 69.0 71.0 84.0

responses for a total of 84 correct responses for 100 questions.

D. Consideration
Firstly, we can see that the two baselines only order the

knowledge corpus in function of the input. In consequence, for
each input the entire possible sentences are outputted. This
problem can be solved by set a minimal similarity value.
MRDF selects only sentence which has a minimal score, in
consequence the responses are less numerous.

We can see that MRDF generates more correct responses
(71.0%) than the two baselines (51.5% and 57.0%). Moreover,
we can also see that MRDF outputs a little more correct
response with a number of consecutive correct responses of
83.0% for Japanese and 84.0% for French. Some inputs get no
responses; in this case the system can be set up to output some
apologies such as “Sorry, I can not answer”.

However, there are still many incorrect responses,
especially for the inputs containing interrogative pronouns. If
we ask the system “What do you like?” it may output “I like
water” as well as just “I like” without any object.

1) Time generation
We also measure the time take by the outputs generation of

MRDF. For the Japanese experimentation, the mean generation
time of the first response was 5.76s and 10.04s for the French
experimentation. This time difference can be explained by
some simplifications introduce by Japanese implicit subject (cf.
IV). However, the mean time generation was 25.00s for
Japanese and 17.04s for French.

VI. CONCLUSION
In this paper, we proposed a new language independent

real-time framework for spoken dialogue agent that we called
MRDF. We also proved that this framework could be used to
generate and select correct responses to a simple input in
totally different languages (grammatically different and using
different script). In addition, the system needs only a simple
small starting data set containing basic knowledge to be
operational.

However, there are still many works to do, especially to
handle interrogative pronouns more efficiently and to be able to
answer more complicated questions. For example, the pronoun
“who” has to be substituted by any element of the cluster
constituted by all persons name or title.

Moreover, MRDF is not ready for scale increase, the
number of parallel processes is too important even with a small

amount of knowledge. That is why, we are thinking about
implementing the substitution part of the framework by using
graph instead of a simple agent for each of them.

Finally, in future research, we are thinking about make the
framework able to handle more knowledge and to carry out
experimentation in additional language to compare the results.
Moreover, we will try to add some sentimental treatments to
make the framework outputs more consistent. For example if
the system hates “peach” we can avoid the generation of the
sentence “I like peach” because “I like” is positive and in
consequence incompatible with “peach” which is associated to
a negative sentiment.

REFERENCES
[1] George A. Miller, “WordNet: A Lexical Database for English”,

Communications of the ACM, vol. 38, no. 11, pp. 39-41, 1995.
[2] Kurohashi and Kawahara lab., “Japanese morphological analysis system

JUMAN version 7”, Graduate School of Informatics, Kyoto University,
2012

[3] R. S. Wallace, “The anatomy of A.L.I.C.E.”, Parsing the Turing Test, pp.
181-210, 2009.

[4] Arnaud Jordan and Kenji Araki, “Spoken dialog processing for
acquiring taste and knowledge”, Proceedings of PACLING2013, 2013.

[5] Arnaud Jordan and Kenji Araki. Comparison of two Knowledge
Treatments for Questions Answering. Proceedings of SNLP2013, 2013

[6] Kenji Araki and Michitomo Kuroda, “Generality of spoken dialogue
system using SeGa-IL for different languages”, Proceeding of the
IASTED International Conference COMPUTATIONAL
INTELLIGENCE, pp. 70–75, 2006.

[7] Christopher D. Manning and Hinrich Schütze, “Foundations of
Statistical Natural Language Processing”, MIT Press, 1999

[8] Wikipedia contributors. "Association (psychology)." Wikipedia, The
Free Encyclopedia. Wikipedia, The Free Encyclopedia, 9 Apr. 2014.

[9] Beate Dorow and Dominic Widdows, “Discovering corpus-specific
word senses”, Proceedings of the tenth conference on European chapter
of the Association for Computational Linguistics-Volume 2, pages 79–
82. Association for Computational Linguistics, 2003

[10] Salton, Gerard, and Michael J. McGill, "Introduction to modern
information retrieval.", 1986.

[11] Masaki Murata, Masao Utiyama and Hitoshi Isahara, “Question
Answering System Using Similarity-Guided Reasoning”, IPSJ SIG
Notes, pp. 181-188, 27 january 2000.

[12] Jaro, M. A., “Advances in record-linkage methodology as applied to
matching the 1985 census of Tampa, Florida”, Journal of the American
Statistical Association, 84:414–420, 1989.

[13] Levenshtein, V. I., “Binary codes capable of correcting deletions,
insertions, and reversals”, Cybernetics and Control Theory, 10(8):707–
710, 1966

29

