
 Procedia - Social and Behavioral Sciences 27 (2011) 2 – 11

1877-0428 © 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of PACLING Organizing Committee.
doi: 10.1016/j.sbspro.2011.10.577

Pacific Association for Computational Linguistics (PACLING 2011)

Text normalization in social media: progress, problems and
applications for a pre-processing system of casual English

Eleanor Clarka* and Kenji Arakia

a Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Sapporo 060-0814, Japan

Abstract

The rapid expansion in user-generated content on the Web of the 2000s, characterized by social media, has led to
Web content featuring somewhat less standardized language than the Web of the 1990s. User creativity and
individuality of language creates problems on two levels. The first is that social media text is often unsuitable as data
for Natural Language Processing tasks such as Machine Translation, Information Retrieval and Opinion Mining, due
to the irregularity of the language featured. The second is that non-native speakers of English, older Internet users and
non-members of the “in-group” often find such texts difficult to understand. This paper discusses problems involved
in automatically normalizing social media English, various applications for its use, and our progress thus far in a rule-
based approach to the issue. Particularly, we evaluate the performance of two leading open source spell checkers on
data taken from the microblogging service Twitter, and measure the extent to which their accuracy is improved by
pre-processing with our system. We also present our database rules and classification system, results of evaluation
experiments, and plans for expansion of the project.

© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of PACLING 2011

Keywords: Natural Language Processing; Machine Translation; Social Media; Twitter; Text Normalization

1. Introduction

The rapid expansion of Internet use, electronic communication and user-oriented media such as

social networking sites, blogs and microblogging services has led to a rapid increase in the need to
understand casual written English, which often does not conform to rules of spelling, grammar and

* Corresponding author. Tel.: +81-11-706-7389; fax: +81-11-709-6277.
 E-mail address: eleanor@media.eng.hokudai.ac.jp

© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of PACLING Organizing
Committee.

3 Eleanor Clark and Kenji Araki / Procedia - Social and Behavioral Sciences 27 (2011) 2 – 11

punctuation. Despite this, text normalization is commonly seen as cumbersome [1], and remains a
somewhat niche topic of research. Studies which attempt to tackle this problem generally use a fully
automated, statistical approach [2,3]; however, we propose that a combination of automated and manual
techniques is a potentially more useful approach to this problem. Accordingly, our aim is to develop a
method which uses automated tokenization, word matching and replacement techniques in combination
with a high- quality, large scale, manually compiled database. We present recent progress on this system,
CECS (Casual English Conversion System).

CECS has two applications: as pre-processing on noisy input for automated Natural Language
Processing tasks such as Machine Translation or Information Retrieval; and as a standalone system for
human users, to aid non- native speakers’ reading comprehension of informal written English, the
irregularity of which may pose a barrier to their positive participation in 21st Century international
communications.

This user-oriented educational aspect of CECS is complemented by the inclusion of annotation on
linguistic and/or cultural aspects of each word or phrase converted by the system. At present, the system’s
knowledge base for text replacement is a manually compiled database of 1,043 items, although expansion
of the database is constant and regular.

2. Related work

Research aimed at the specific problem of automatically normalizing casual English is relatively rare

[4]. While spelling error correction is a well-established area, with initial pattern matching and n-gram
analysis techniques having improved over the last two decades [5], the range of problems presented by
user-generated content in online sources go beyond simple spelling correction; other problems include
rapidly changing out- of-dictionary slang, short-forms and acronyms, punctuation errors or omissions,
phonetic spelling, misspelling for verbal effect and other intentional misspelling, and recognition of out-
of-dictionary named entities [6].

 Research on unknown vocabulary items often focuses on the recognition and
translation/transliteration of proper names; although Sproat et al. [1] included some attempts at automatic
expansion of acronyms and abbreviations, slang and casual language were not specifically featured.
Sproat et al. note that “text normalization is not a problem that has received a great deal of attention, and
it (...) seems to be commonly viewed as a messy chore” [1]. Alexander Clark’s work on pre-processing a
large collection of the Internet discussion system Usenet’s posts, through a straightforward machine
learning methodology using generative models and a noisy channel method, made some progress towards
handling the type of input discussed here, but faced problems with the quality of the corpus and did not
reach the evaluation stage [7]. Aw et al. [2] have produced a system for normalizing Short Message
Serviceb mobile phone texts, which share many of the characteristics of the casual English focused on in
this paper, such as non-standard short-forms of words, creative phonetic or stylistic spelling, and
punctuation omission, by creating a parallel corpora of 5,000 raw and normalized English SMS messages
and applying a phrase-based SMT model, resulting in significantly more accurate translations when the
system’s output was passed through commercially available MT systems. The use of a phrase-based
model rather than a word-based one incorporates logical contextual information to the translation model
and thus improves lexical affinity and word alignment. However, their model is essentially a fairly

b Short Message Service, or SMS texts are limited to 160 characters in length, which gives necessity for the creative use of new

shortened forms of language.

4 Eleanor Clark and Kenji Araki / Procedia - Social and Behavioral Sciences 27 (2011) 2 – 11

straightforward SMT system, and was limited by the unavailability of parallel corpora suitable for
automated constructing of such a system.

 Henriquez et al. [3], in their work for the CAW 2.0 project introduced an approach using a n-gram
based SMT system and were able to produce syntactically correct sentences from input with a high
frequency of misspelled words and Internet slang, but again found that their system’s effectiveness had “a
strong dependency on the dictionary quality and size” and that their “small dictionary is not able to handle
all possible abbreviations and terms”.

With the rapid expansion of new media, the irregularity of language poses a barrier to automated
tasks. Ritter et al., in their modeling of Twitter dialogue acts, found that posts were “often highly
ungrammatical, and filled with spelling errors”, and resorted to selecting clusters of spelling variations
manually [8]. The interest in content of this type, both from researchers and corporations, shows a
pressing need for effective text normalization of casual English.

3. Casual English classification system and database

3.1. Casual English classification system

Our Casual English Conversion System (CECS) is designed on the basis that errors and irregular

language used in casual English found in social media can be grouped into several distinct categories, and
accordingly, a multi-faceted approach will be the most effective way to deal with the problem. The
categories used in CECS’ database are as follows. 1. Abbreviation (shortform). Examples: nite
(“night”), sayin (“saying”); may include letter/number mixes such as gr8 (“great”). 2. Abbreviation
(acronym). Examples: lol (“laugh out loud”), iirc (“if I remember correctly”), etc. 3. Typing error/
misspelling. Examples: wouls (“would”), rediculous (“ridiculous”). 4. Punctuation omission/error.
Examples: im (“I’m”), dont (“don’t”). 5. Non-dictionary slang. This category includes word sense
disambiguation (WSD) problems caused by slang uses of standard words, e.g. that was well mint (“that
was very good”). It also includes specific cultural reference or in group-memes. 6. Wordplay. Includes
phonetic spelling and intentional misspelling for verbal effect, e.g. that was soooooo great (“that was so
great”). 7. Censor avoidance. Using numbers or punctuation to disguise vulgarities, e.g. sh1t, f***, etc.
8. Emoticons. While often recognized by a human reader, emoticons are not usually understood in NLP
tasks such as Machine Translation and Information Retrieval. Examples: :) (smiling face), <3 (heart).

3.2. Database construction and rules

 CECS uses a manually compiled and verified database, currently of a total of 1,043 entries. These

entries are either single words or phrases; the trie-type data structure theoretically allows for phrases of
unlimited word length, but at present the majority of phrase entries are sets of two or three words. Each
entry has been taken from training data which is rich in casual English, including Twitterc entries and
YouTubed comment boards, and meanings have been verified through collaborative user-compiled, user-
evaluated resources such as Wiktionarye and Urban Dictionaryf . Database entries comprise of four

c http://twitter.com
d www.youtube.com
e www.wiktionary.org
f www.urbandictionary.com

5 Eleanor Clark and Kenji Araki / Procedia - Social and Behavioral Sciences 27 (2011) 2 – 11

columns: “error word” (the casual English item), “regular word” (the corresponding dictionary English
item), “category” (the item’s category as defined in Section 3.1) and “notes” (cultural or linguistic
information about the item’s origin, intended for CECS’ human users). Database construction is an
ongoing project, and we intend to improve its coverage and quality further. Careful manual editing of the
database includes checking to avoid rule conflicts, a common problem in rule-based systems.

3.3. Phrase matching rules

Phrase matching in CECS is an important feature. Firstly, slang phrases constituting more than one

word can be matched in the database; secondly, problems regarding word sense disambiguation (WSD)
problems can be tackled. When a word exists as a regular English word but is often used in casual English
to mean something else, it is not detected by conventional spellcheckers. As an example, the regular
English word “rite” is commonly used as a shortened form of “right”. However, it may also be used in its
original meaning as “ritual”, as the following example sentences show.

Regular usage: Going to high school is tough, but it is a necessary rite of passage.
Casual usage: seein that ad makes me wanna listen to dat song rite now (Seeing that advertisement
makes me want to listen to that song right now).

As well as being confusing to non-native readers, this word causes problems to MT applications,

which tend to translate it as “ritual”, rendering many casual English sentences difficult to understand after
translation. With phrase matching in CECS, common combinations of “rite” which can only be used in
the sense of “right” can be added into the database. Thus, pre-processing casual English with CECS can
improve MT handling of such vocabulary items. Table 1 shows a section of the database entries
containing “rite”:

Table 1. Section of database entries containing “rite”

Input Normalization

is rite is right

it rite it right

iz rite is right

so rite so right

r rite are right

rite now right now

rite away right away

This approach also proves useful for normalizing numbers which have been used as phonetic

substitutions, e.g. “4” for “for”, “2” for “to” or “too”, etc. Whereas it would be obviously inaccurate to
automatically convert all instances of the number “4” to “for”, with phrase matching it is possible to
convert a high number of occurrences correctly using carefully designed combinations. Thus, we can
define the rules for the usage of these items manually, and automatically convert appropriately with
CECS. So far, the number of necessary phrase matching rules per vocabulary item differs widely.

While this strategy of addressing WSD cannot yet cover every potential possibility and usage, it is
logical that the combinations used are finite and thus can be entered in the database. As more data is

6 Eleanor Clark and Kenji Araki / Procedia - Social and Behavioral Sciences 27 (2011) 2 – 11

collected, analyzed and more examples gathered, the quality and coverage of the database further
increases.

4. System overview

 The flow of CECS is shown schematically in Figure 1.

Fig. 1. System flow of CECS

CECS is written in the Python programming language. Firstly, user input is tokenized using a strictly

regular grammar defined in PyParsingg, which defines words and punctuation as separate tokens, and
allows combinations. “Main characters” are defined as the letters from a-z and A-Z, numbers 0-9 (in case
of spellings which incorporate numbers such as “gr8” for “great”), and selected punctuation marks which
may appear mid-word such as apostrophe (“don’t”), hyphen (“mid-word”), and asterisk for censor
avoidance spellings (“s***”), etc. “Other characters” are defined as all other ASCII characters, and
whitespace and carriage returns are defined separately. A token is thus defined here as either a word
composed of main characters (“English word”) or composed of other characters (“punctuation token”).

Tokenized input is then passed through the database to find a match, using a trie-type data structure.
The database is recursively loaded into a trie to allow easy item lookup, tokenized by the same tokenizer
used for input. Database entries which are a front-anchored substring are allowed, but full matches are
not. Using this data structure, multi-word phrase matching is enabled.

When a match is found, the normalized English equivalent is displayed in the user interface in the
“Output” pane, and the replaced item’s category and notes, where present, are displayed in the “Notes”
pane. Tokens not found in the database are passed through unchanged.

5. Experiments

5.1. Overview of previous experiments: CECS on MT input, CECS for human evaluators

g http://pyparsing.wikispaces.com/

7 Eleanor Clark and Kenji Araki / Procedia - Social and Behavioral Sciences 27 (2011) 2 – 11

 Previous evaluation experiments were conduction in order to assess CECS’ effectiveness as a pre-
processing system for Machine Translation (MT) input, and also as a reading aid for non-native readers of
English [6].

In testing CECS’ as a pre-processor for MT input, 100 sentences from the popular microblogging
service Twitterh were run through two well-known free MT applications, Google Translatei and Systranj.
The same sentences were then pre-processed with CECS and run through Google Translate and Systran a
second time. The quality of the resulting translations was compared by measuring error incidence. The
working language pair used was English to Japanese. Of the 100 Twitter sentences, 20 were “known”
sentences, i.e., they had been analyzed for error words and those items were pre-entered into the database.
The remaining 80 were “unknown” sentences. MT errors were counted manually in two separate
categories, “non-translated word” (“NTW”) and “wrongly translated word” (“WTW”). An NTW is
defined here as the MT application simply reproducing an item as roman letters or numbers, and not
converting to Japanese at all. A WTW was defined as a Japanese word that is completely semantic
different from the English meaning. In the “unknown” data, with an average sentence length of 15.35
words, there was a decrease in NTW occurrence from 3.34 to 0.86 words per sentence (average of both
MT applications). This significant drop showed that CECS’ database coverage already gives a reasonable
performance.

 In evaluating CECS for human users, ten non-native learners of English between the ages of 23 and
64 completed two questionnaires, in which they were asked to assess their understanding of 20 sentences,
also taken from Twitter. The first questionnaire used raw input for the sentences, and the second
questionnaire used the same sentences after processing by CECS. No participants were allowed to see the
corrected sentences until they had submitted the first questionnaire. Rankings were made on a five-point
semantic differential scale, as follows:

Question: How much of the sentence can you understand?
1. None at all 2. A little 3. Some 4. Most 5. All.

Evaluators were also asked to give a reason for why they could not understand part or all of each

sentence. They were given three choices: vocabulary, grammar and context. Attributing more than one
reason to failing to understand a sentence was possible. Evaluators were also asked to assess their level of
English comprehension on a scale of 1 (very basic) to 5 (excellent). Overall, average understanding of the
20 sentences increased by exactly one semantic differential point: evaluator comprehension of the
sentences averaged at 2.89 for raw input, on the low side of “Some” on the semantic scale, and 3.89 for
system output, or slightly lower than “Most” on the semantic scale.

5.2. CECS with spellchecking: GNU Aspell and Hunspell

We have established in Sections 1 and 2 why conventional spellchecking alone is inadequate for

tackling the problem of casual English used in social media; namely, that the range of error types is too
broad. Conversely, using CECS as a replacement for conventional spellchecking is not useful as the
database coverage cannot compete with major spell checkers’ dictionaries, and also, “normal” –

h www.twitter.com
i http://translate.google.com
j http://www.systranet.com

8 Eleanor Clark and Kenji Araki / Procedia - Social and Behavioral Sciences 27 (2011) 2 – 11

presumably unintentional - spelling errors (typos and common misspellings) are frequent occurrences in
social media data. It was noted that in previous experiments with CECS, a large proportion of unresolved
errors fell under the category of typo/spelling errors [6].

Thus, as a solution to this problem, we assumed that the integration of an open-source spellchecker
into our system would be the next logical step to improving efficiency. As a preliminary experiment, we
compared 80 sentences of Twitter data run through two open source spellcheckers, GNU Aspellk and
Hunspelll, firstly unprocessed by CECS and then after pre-processing with CECS. Aspell and Hunspell
were chosen due to being the two leading open source spellcheckers at the time of writing. Although
Aspell was previously the major open source spellchecker, often featuring in NLP research [4], Hunspell
is now the spellchecker of OpenOfficem and Mac OS Xn and it is also used by the Google Chromeo,
Mozilla Firefoxp and Operaq browsers, replacing Aspell in some casesr.

Data for this experiment was 80 sentences (“tweets”) taken from Choudry et al.’s [9] Twitter
corpuss. The sentences had not been used as training data for CECS, and thus there were many out-of-
database items which were not corrected by CECS. We hypothesized that using the open source
spellcheckers would improve total error correction significantly, and that using CECS as a pre-processing
filter would improve the error correction of the spellcheckers. We also hypothesized that Hunspell’s
performance would be superior, as it has superceded Aspell in many popular applications, as mentioned
above.

The experiment process was as follows. Eighty twitter sentences, of a total of 1,208 words in
unprocessed form, and then in pre-processed form with a slightly expanded total of 1,253 words, were
spellchecked using Aspell and Hunspell respectively. The results were defined into three categories:

a) Regular English Word. A word accepted by the spellchecker’s dictionary as a correct English
word. Example: “what did you say”.
b) Resolved Error. A word that was indicated by the spellchecker as an error, and the first
replacement candidate offered by the spellchecker was correct. Example: “wat did you say”,
replaced by “what did you say”.
c) Unresolved Error. A word that was indicated by the spellchecker as an error, and the first
replacement candidate offered by the spell checker was incorrect. Example: “wat did you say”,
replaced by “water did you say”.

k http://aspell.net
l http://hunspell.sourceforge.net
m http://www.openoffice.org
n http://www.apple.com/osx
o http://www.google.com/chrome
p http://www.mozilla.com/firefox
q http://www.opera.com
r Opera 10 now using Hunspell : http://my.opera.com/desktopteam/blog/2009/04/03/turbo-in-10 (accessed January 12th 2011)
s A 10.5 million “tweet” (Twitter posting) Twitter corpus as compiled and publicly released by Choudhury [9]. The corpus contains

tweets from 200,000 unique users collected between 2006 and 2009; the sentences used in our experiment were taken from the

September 2009 section of the corpus.

9 Eleanor Clark and Kenji Araki / Procedia - Social and Behavioral Sciences 27 (2011) 2 – 11

The correctness of replacement candidates was verified by two native speakers. Note that only the
first candidate produced by the spellchecker was considered, so even if the second, fifth or tenth
candidate was correct, the word would be defined as an Unresolved Error.

5.3. CECS with spellchecking: experiment results

The results of the experiment are shown in Figs. 2 and 3. The first notable outcome is that the use of
CECS as a pre-processing system greatly reduced error incidence. The second is that although the two
spellcheckers performance is almost identical on the pre-processed data, Aspell seems to have a slight
advantage on the unprocessed data.

Unprocessed Twitter Data

1034

1025

48

39

126

144

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Aspell
Unprocessed

Hunspell
Unprocessed

S
p

e
ll

c
h

e
c
k
e
r,

 d
a
ta

 t
y
p

e

Percentage of Total Words (1208)

Regular English Resolved Errors Unresolved Errors

Fig. 2. Unprocessed Twitter data spellcheck results

Preprocessed Twitter Data

1196

1194 18

17

41

40

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Aspell
Preprocessed

Hunspell
Preprocessed

S
p

e
ll

c
h

e
c
k
e
r,

 D
a
ta

 T
y
p

e

Percentage of Total Words (1253)

Regular English Resolved Errors Unresolved Errors

Fig. 3. Pre-processed Twitter data spellcheck results

10 Eleanor Clark and Kenji Araki / Procedia - Social and Behavioral Sciences 27 (2011) 2 – 11

5.4. CECS with spellchecking: Aspell/Hunspell comparison and evaluation

Broadly speaking, both Hunspell and Aspell usually detected and corrected the same Casual English

items, with some significant differences. Although the results seem to indicate that Aspell’s performance
is superior on the unprocessed data, this is due to error detection as well as error correction, and thus not
so clear-cut. For example, Aspell ignores the use of numbers mixed with letters, leading it to treat items
such as hard2tell (“hard to tell”) and sh1t (“shit”), as appeared in our experiment data, as accepted as
English words. Hunspell treats number-letter combinations as problems, although did not provide correct
candidates for any. This discrepancy in detection partially accounts for higher Unresolved Errors in
Hunspell.

Further examples of incomplete error detection are emoticons and single letters. Both spellcheckers
ignore punctuation marks, thus emoticons such as “:)” and “:-(“ were not flagged; however, emoticons
which include letters such as “:p” or “;D” were defined as spelling errors. “Single letters” refers to the use
of “b” for “be”, “r” for “are”, “c” for “see”, etc. None of these are flagged as spelling errors, but if used
in MT data, for example, they are untranslatable. Normalization with CECS removed these problems in
virtually all cases in our experiment data.

 Other obvious weaknesses in using the spellcheckers on social media data were WSD problems and
non-dictionary slang. For example, neither Hunspell nor Aspell flagged phrases like rite now, which
causes problems as explained in Section 3.3. WSD also caused problems with apostrophe omission,
where the commonly occurring “cant” for “can’t” and “wont” for “won’t” were recognized as correct
English words (which presumably would lead them to be translated with the meanings of “hypocrisy” and
“habit”). However, apostrophe omission in longer words such as “havent” and “theyre” tended to be
correctly handled. Slang shortforms posed more of a problem. For example, “im”, frequently used for
“I’m” (as well as other uses such as an abbreviation for “instant message”) was a major stumbling block
for Hunspell. Aspell correctly converted “im” to “I'm”, but Hunspell did not even list it as a candidate
(candidates were: mi, um, om, in, i, m, ism, aim, rim, dim, imp, him, vim, Sim, Tim). The common
shortform “ur”, which can be “your” or “you’re” depending on context, was capitalized and identified as
the place name Ur by both spellcheckers. However, “u're” was correctly identified as “you're” by both.
Conversely, the frequently occurring “coz” for “because” was converted to the proper name “Cox” by
both Aspell and Hunspell.

The spellcheckers showed their strengths on typing errors that stem from key proximity, for example
“shoukd” was correctly converted to “should” by both Hunspell and Aspell. This kind of typing error is
difficult to cover with the CECS database, and here the integration of a spellchecker would be highly
beneficial. Hunspell performed well with vowel omission, for example correctly suggesting “anyhow” for
“nyhw”, which Aspell did not. Hunspell also performed well with missing final g’s, correctly converting
“feelin”, “hatin” and “sayin” to “feeling”, “hating” and “saying”, but Aspell consistently suggested
“(verb) in” as the first candidate. Neither correctly handled the commonly occurring “goin” (“going”),
however, with Hunspell offering “goon” and Aspell choosing “go in”.

Correction of wordplay featuring lengthened vowels was hit-and-miss, with Aspell faring somewhat
better than Hunspell. “Soo” and “sooo” for “so” were correctly handled by Aspell but not Hunspell
(offering “sou” or “soho”), but longer examples were not correctly converted by either, e.g. “ooooohhhh”
prompted Hunspell to offer “Houyhnhnm, Hohenlohe” as candidates, whereas Aspell offered the
semantically closer “oohing”.

Overall, with the unprocessed data, the slightly higher Resolved Error count for Aspell was likely
due to Aspell's correct conversion of "im"; the higher Unresolved Error count in Hunspell was mostly due

11 Eleanor Clark and Kenji Araki / Procedia - Social and Behavioral Sciences 27 (2011) 2 – 11

to number/letter combinations being flagged as errors, whereas they were ignored by Aspell. However,
with the pre-processed data, differences in results were largely insignificant.

This leads us to the question of which spellchecker will be a better choice for integration with our
system. Although after pre-processing the difference in results is minimal, considering each
spellchecker’s strengths and weaknesses with different types of errors, it seems that Hunspell may be
slightly more useful, due to its flagging of number/letter mixes and better handling of vowel and final “g”
omission.

5. Conclusion

We have presented a discussion of the major problems in processing social media English, the

usefulness and possible applications of doing so, and our progress on a system designed for that purpose.
We have described an experiment which examines the efficacy of conventional spellcheckers on casual
English, and to what extent this could be improved with pre-processing with our system. The results
showed that average errors per sentence decreased substantially, from roughly 15% to less than 5%. We
concluded from this that the next step for our system should be the integration of an open source
spellchecker, which, from its performance in our experiment, will probably be Hunspell. We are
confident that the future progress of our project will show further improved results, and that a multi-
faceted, integrated approach like ours will prove to be the most effective way of normalizing casual
English.

Acknowledgements

The authors gratefully acknowledge support from Hokkaido University Global Centers of Excellence

program and from the KDDI Foundation, both of which have made this research possible.

References

 [1] Sproat R, Black AW, Chen S, Kumar S, Ostendorf M, Richards C (2001). Normalization of non-standard words.
Computer Speech and Language, 15(3), 287–333.
[2] Aw A, Zhang M, Xiao J, Su J (2006). A phrase-based statistical model for SMS text normalization. Proceedings of the
COLING/ACL 2006 Main Conference Poster Sessions, Sydney, Australia, July 2006, 33–40.
[3] Henriquez CA, Hernandez A (2009). A ngram-based statistical machine translation approach for text normalization on
chat-speak style communications. Proceedings of CAW2.0, Madrid, Spain, August 2009, 1–5.
[4] Wong W, Liu W, Bennamoun M (2007). Enhanced integrated scoring for cleaning dirty texts. Proceedings of IJCAI 2007
Workshop on Analytics for Noisy Unstructured Text Data, Hyderabad, India, January 2007, 55–62.
[5] Kukich K (1992). Techniques for automatically correcting words in text. ACM Computing Surveys, 24(4), 377–439.
[6] Clark E, Roberts T, Araki K (2010). Towards a Pre- processing System for Casual English Annotated with Linguistic and
Cultural Information. Proceedings of Computational Intelligence 2010, Hawaii, August 2010.
[7] Clark A (2003). Pre-processing very noisy text. Proceedings of Workshop on Shallow Processing of Large Corpora,
Lancaster, UK, March 2003, 12–22.
[8] Ritter A, Cherry C, Dolan B (2010). Unsupervised modeling of Twitter Conversations. Proceedings of HLT-NAACL 2010,
Los Angeles, California, June 2010, 172–180.
[9] Choudhury MD, Lin YR, Sundaram H, Candan KS, Xie L and Kelliher A (2010). How does the sampling strategy impact
the discovery of information diffusion in social media? Proceedings of the 4th International Conference on Weblogs and
Social Media, Washington DC, USA, May 2010.

