
Determinising the output of dependency parser by extending grammar
rules with weights

Jacek Maciejewski Rafal Rzepka Kenji Araki
Graduate School of Information Science and Technology, Hokkaido University

{yaci, kabura, araki}@media.eng.hokudai.ac.jp

Abstract

This paper describes research in improv-
ing DGP (Dependency Graph Parser).
DGP is one of the most efficient depen-
dency parser for Polish today. However,
it is non-deterministic which makes it in-
sufficient when numerous graphs are pro-
posed for one sentence. In our research we
aim to overcome this problem by adding
weights to grammar rules and thus mak-
ing possible to rank the output trees and
choose the most appropriate one.

1 Introduction

Automatic syntactic analysis plays a vital role
in numerous applications such as search engines,
machine translation systems, intelligent chatbots,
etc. Dependency parsing is widely recognized as
one of the best approaches for performing this dif-
ficult task. Dependency-based methods have be-
come increasingly popular in the field of natu-
ral language processing in recent decade (Nivre,
2005). One of the reasons for this is the fact that
dependency grammars seem to be better suited for
free word order languages (such as Polish) than
phrase structure grammars. In recent years vari-
ous parsers were developed for many languages,
however very few were created for Polish. Most
likely the most efficient one today is DGP (De-
pendency Graph Parser). This method however
is non-deterministic which is a big disadvantage
in some applications like question-answering sys-
tems. In our research we aim to overcome this
problem by adding weights to grammar rules and
thus making possible to rank the output trees and
choose the most appropriate one.

2 Grammar

DGP was developed together with complex depen-
dency grammar (for Polish) by Obrebski (2002).

Figure 1: Rules LEFT and RIGHT preventing creation of
unnecessary relations in a polish equivalent of the sentence
”A cat chases mice”

As the basic knowledge about this formalism is
crucial, we will briefly explain it here. There are
four types of rules in Obrebski’s formalism.

2.1 LINK
LINK is the rule that allows connecting two words
meeting certain lexical criteria with the relation R,
like below.
LINK n1 n2 R
For example the rule
LINK V N sub j
allows connecting verb and noun with the relation
subject. LINK is the only rule that allows for cre-
ating relations. The others are restrictions that ac-
tually prevent from creating too many excessive
relations.

2.2 LEFT (RIGHT)
LEFT R (and RIGHT R) allows for creating rela-
tion R only if the child word precedes (follows)
its head in the parsed sentence.

2.3 SGL (Single)
SGL R prevents the situation in which there will
be more than one relation R originating from the
same head. For example
LINK V N sub j

121



Figure 2: REQ would not allow for creating an egdge over
wn

SGL sub j
is equivalent to statement that a given verb cannot
have more than one subject.

2.4 REQ (Required)

The last and the most complex rule is
REQ w R
It has to be mentioned here that DGP is a pro-
jective parser. Due to this restriction if we create
relation R between wn−1 and wn+1 in the example
string
wn−2 wn−1 wn wn+1 wn+2
it would be impossible to link wn with wn+2. This
may be sometimes unacceptable as it may lead
to situation in which some nodes (words) will
be left unconnected. REQ prevents creating any
relation over the word meeting the certain lexical
criteria W until W will be linked using relation
R. For example REQ V sub j is equivalent to the
statement that a verb must be linked with other
word using relation sub j.

3 Dependency Graph Parser (DGP)

Before proceeding we need to get familiar with
basic concepts of DGP. DGP simply implements
the Covington’s algorithm (Covington, 2001) for
parsing. It is of course extended with a few more
steps checking abovementioned restrictions. De-
tails are provided in (Obrebski, 2003) and (Obreb-
ski, 2005)

The most notable feature of the parser is its
memory efficiency. It stores all possible outputs
as one dependency graph and the final trees are be-
ing extracted if needed by a separate tool. This is
an important feature because as it was mentioned
before DGP is a nondeterministic parser which
means it can generate more than one parsing tree
for each sentence. For long sentences more than
one thousand output trees can be produced. DGP

Figure 3: SGL rule forces copying nodes

was originally developed as a tool for extracting
sentences meeting certain criteria (e.g. sentences
containing noun phrases) from large corpora. Un-
like efficiency, non-determinism was not an obsta-
cle although it limits the possible applications. We
concentrated on making DGP deterministic, how-
ever, as it would be explained later, implementing
some of our ideas may seriously affect the parsing
speed.

The way of creating a parsing graph and its
structure were described in (Obrebski, 2005) so
we will not go into details however we have to get
familiar with the concept of copying nodes. Using
SGL or REQ rule to create a relation affects the
properties of head node. For example if we apply
SGL rule to a relation R between nodes w1 and w2
then (assuming w1 is the head) we cannot create
the same relation between w1 and w3. This is a de-
sired behavior, however note that maybe it would
be possible to connect w1 with w3 instead w2. This
would fulfill SGL rule and could lead to receiving
one more correct tree. To overcome this problem
the idea of copying nodes were introduced in DGP.
We first create a copy of w1 and make it a head of
w2. Then we create another copy to which w3 will
be attached. There is no limit for the number of
copies and the copies can be multi-level (we can
copy a copied node).

4 Extending grammar

Our aim is to extend the grammar rules with
weights. As a result this will let us to rank the out-
put trees and choose the best one(s). We wanted
to leave both grammar and the main parsing un-
touched, proposed changes do not require any se-
rious modifications. All weigths will be from the
range < 0,1 >∈ R.

122



4.1 Extending LINK
The extended rule will look like the following
LINK n1 n2 R w
In a parsing graph this will assign the weight w to
the edge representing the relation R.

4.2 Extending LEFT (RIGHT)
The rule will look like the following
LEFT R w (RIGHT R w)
However when it comes to mapping weights to
parsing graph we will have three possibilities.
Let’s say we want to connect the nodes (words)
w1 and w2 (w1 precedes w2) with the relation R
where w2 will be the head and w1 dependant.

If the rule LEFT for relation R exists we con-
nect nodes and multiply the LEFT’s weight with
the weight of appropriate LINK rule that has been
used to create the relation R. We assign the result
to the newly created edge.

If there is no LEFT rule but the RIGHT rule for
the relation R exists, we proceed similar as above,
but instead of using RIGHT’s weight in multipli-
cation, we take 1−w.

If there is neither LINK nor RIGHT rule we also
proceed similarly replacing missing weight with
0.5. Of course for RIGHT rule we perform the
similar operations respectively.

In both LINK and LEFT (RIGHT) cases the
weights depict how often the given relation or phe-
nomenon occurs in natural language. We hope
that extending abovementioned rules in a way we
did and mapping to dependency graph is obvi-
ous to the reader. In the last case we are forced
to add an artifical, neutral weight because with-
out it the edge will get much higher weight than
those where LEFT (RIGHT) rules where applied
(as there would be no multiplication).

4.3 Extending SGL and REQ
We extend both SGL and REQ rules in similar way
however the interpretation of weights and the way
of mapping to parsing graph is totally different.
Those weights will actually be punishments for vi-
olating the given rule and will be assigned to the
nodes instead of edges. Assume we are applying
an SGL rule to create relation R from w1 to w2.
As it was described in above paragraph the node
w1 will be copied. If the rule is not violated it
will get a neutral weight equal to 1. However if
we were about to violate the rule and make w1 the
head of two the same relations R we would cre-

ate another copy and assign it the weight (punish-
ment) associated with the rule. We will proceed
respectively for a REQ rule. To compute this kind
of weight we will have to check in how many cases
a given phenomenon occurs in real language (e.g.
in how many cases a sentence has only one subject
in comparison to having two or more). The final
weight is 1− computedvalue. We must mention
here, that original Obrebski’s algorithm does not
allow for violating neither SGL nor REQ rule. By
allowing such an operation we want to make possi-
ble to construct trees that could not be constructed
otherwise (due to the strictness of the grammar).
This is supposed to improve the parser’s accuracy.
However this can greatly increase the processing
time as the number of output trees may increase
significantly. In other words this extension should
be implemented only if we value the parser’s ac-
curacy over processing time.

4.4 Selecting the best tree

The final rank of the tree is calculated in the fol-
lowing way: first we multiply the weight of each
edge with the weight of its head. Then we multi-
ply the weights from all edges. If the result is x
we compute k

√
x where k is the number of edges in

the tree. The root is used to make the final rank
independent of the number of edges and also the
rank more human-readable (this step however can
be omitted in most cases). As this may be a little
bit unclear for the reader we will show the pseu-
docode for better understanding:

for each e in set of tree’s edges
e.weight = e.source_node.weight

for each e in set of tree’s edges
tree.rank = tree.rank * e.weight

The best tree will be the one with the heighest
rank. It should be mentioned that as there might
be more than one interpretation of a given sentence
we don’t have to limit ourselves to choosing only
one tree.

5 Conclusion

The weights may be obtained by analyzing the tree
bank. The way of doing may slightly differ de-
pending on the language. Zelman (2004) is point-
ing that taking some structures present in Prague
Dependency Treebank into account may affect the
statistical model in a bad way. That’s way we have

123



to use caution while creating appropriate machine
learning algorithm.

Unfortunately there is no dependency treebank
for Polish that we could use. We experimented
with a very small treebank (92 sentences, which
is obviously not enough to assign weights to al-
most 30 000 grammar rules). The sentences we
used to check parser’s accuracy were manipulated
to compensate for small amount of training data.
Although the results were promising, they are not
enough to draw any conlusions until more source
data will be obtained and larger tests will be con-
ducted. Currently we focus our research on build-
ing linguistic resources that would allow us to run
more test. If the extensions we proposed will
prove usefull, we will continue with making the
parser working with Japanese and other languages.

References

1 Tomasz Obrebski. 2002. ”Automatyczna
analiza skladniowa jezyka polskiego z wyko-
rzystaniem gramatyki zaleznosciowej” [in
Polish], PhD Thesis, Poznan University of
Technology, Poland.

2 Tomasz Obrebski. 2003. ”Dependency pars-
ing using dependency graph”, Proceedings of
the 8th International Workshop on Parsing
Technologies (IWPT).

3 Tomasz Obrebski. 2005. ”An all-paths
parsing algorithm for constraint based de-
pendency grammars of CF power”, Springer
Berlin, pp. 139-146.

4 Michael Covington. 2001. ”A fundamental
algorithm for dependency parsing”, Proceed-
ings of the 39th annual ACM southeast con-
ference.

5 Joakim Nivre. 2005. ”Dependency Grammar
and Dependency Parsing”, MSI Report.

6 Daniel Zelman. 2004. ”Parsing with a
statistical dependency model”, PhD Thesis,
Karlov University, Prague

124


