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Abstract: We propose a communication robot that can acquire verb meanings through interaction with
a human. Our target verbs are body movement verbs that have two objectives and can be performed only
by using arms and head of a humanoid robot. In our system, sentences as ”place the right hand on the
head”, are input using a keyboard and the movements are taught from a human by moving the robot’s
arms through physical interaction. For an impression evaluation using the SD method, 16 participants
taught the robot two verbs, which are ”put-on” and ”move-away-from”, through ten times interactions
with the robot. The result showed the verb acquisition ability using direct physical feedback is efficient
to make human-robot communication more interesting, enjoyable and fulfilled.

1 INTRODUCTION

By the year 2025, the world’s problem with aging society
will become painful. Around 1.2 billion people are age
60 and over in the world and this number is expected to
rise to 2 billion by 2050, according to WHO’s estimates1.
Moreover, many elderly people will live alone and peo-
ple will have to spend much more time for work, because
work force decreases. In such society, one of the most
important problems is decreasing chances of communi-
cation among people. Therefore, developing robots that
can communicate with human is needed to improve the
quality of our life.

There are already several robots defined as ”communi-
cation robots” that their purpose is to communicate with
humans [1, 2, 3], and they are able to communicate with
human through many types of media [4, 5, 6], which are
for example speech-language, body movements or facial
expressions. However, the quality of communication is
too low for users to use them for a long time because
they achieved only simple and shallow communication,
for example, interactions based on the static rules and
conversations using limited vocabulary. To make human-
robot communication more satisfying, we strongly believe
that more complex and deeper communication is needed,
and language acquisition is one of abilities to realize such
communication through teaching a machine word mean-
ings.

In this paper, we will propose novel language acqui-
sition method through physical feedback in a humanoid
robot to communicate with humans. Physical interaction
is important for enjoying communication, and verbs are
most basic words to be taught by physical feedback.

We will describe related works and original points of
our language acquisition method in the section 2, and
explain our language acquisition system in the following
sections. Then we will give a brief explanation about
a verb acquisiton experiment that shows the robot can
learn four actions: ”place-on”, ”move-close-to”, ”move-
away-from”, and ”touch-with” through interaction with
human, and the learned verbs have robustness in terms

1WHO project, Ageing and life course:
http://www.who.int/ageing/en/

of changing objectives, initial position, and end position
in the section 8, and in the section 9 we will describe how
the verb teaching interaction influences users through a
simple human-robot interaction experiment. In these ex-
periments our target language is Japanese and we will
use italic when giving Japanese examples. Because our
method is language independent, we will examine it with
other languages as English, in the future. Lastly, we will
give discussions and our conclusions.

2 STATE OF THE ART

To make robots acquire language, we have to face the
symbol grounding problem [7] how computers automat-
ically relate the symbolic language system to the non-
symbolic real world. Several ways of symbol grounding
method are proposed [8, 9, 10, 11, 12, 13, 14]. How-
ever, we believe that there are still many problems that
should be resolved in verbs acquisition, although many
researchers have tried to realize the system. This is be-
cause a motor pattern that robots have to generate com-
pletely changes corresponding to both language contexts
(objectives) and physical contexts (initial position, end
position, obstacles) which are input a verb.

There are some research activities in verb acquisition
field [15, 16]. Tani et al. [17] described a system us-
ing Recurrent Neural Network, where a movable arm
robot acquires nouns and verbs from pairs of a two words
phrase like ”push green” and a motor pattern. Sugiura
et al. [18] also developed a verbs acquisition model for
an arm robot. They used Hidden Markov Model to learn
object-manipulation-verb meanings from sets of a sen-
tence and a trajectory of robot’s arm. The trajectory
was in the trajector2-reference point3 specific coordinate
system.

However, their verb representation models are statisti-
cal models based on direct motor patterns or the trajec-
tor’s trajectories. The model based only on trajectories

2A trajector is what moves mainly in a movement. It can
be an object or a body part.

3A reference point is what is referred by a trajector in a
movement.



can not represent meanings of some verbs which are in-
dependent of the trajectories. For instance, ”move the
right hand close to the left hand” does not mean the
way how the right hand moves to the left hand but how
the distance between the right hand and the left hand
was shorten independently of its trajectory. Moreover,
though they achieve visionary teaching methods to teach
movements to robots, we believe that physical contact
teaching is also efficient for more entertaining communi-
cation.

Original points of our proposed method are a move-
ment teaching method using direct physical feedback and
a feature based verb representation model based not only
on trajectories but also on trajector-reference point rela-
tionships. We will describe a feature based representa-
tion model that has six features including both trajector-
reference point relationships and the trajector’s trajec-
tory for body manipulation movements. Body movement
verbs, our targets, are verbs which imply body move-
ment and which have two objectives which also imply
body parts. Our representation model has merits of the
fact that some verbs which are independent of the trajec-
tories are represented appropriately and it is easy for a
designer to understand how these verbs are represented.
Above mentioned probabilistic and connectionist meth-
ods do not have these merits. We also describe a novel
learning algorithm where a humanoid robot acquired ab-
stract verb meanings from sets of a textual command and
a motor pattern which are taught by human using direct
physical feedback.

3 OVERVIEW OF OUR SYSTEM

We will show an overview of our system below (Figure
1). It works in two phases: learning and testing. In the
learning phase, a user inputs a Japanese textual com-
mand which contains a body movement verb with two
objects by using a keyboard. Then, the user also inputs
a proper movement to the robot through direct physical
feedback (see section 3.3). The feedback movements are
detected as motor angle patterns retrieved from each sen-
sor. Next, the system converts a set of a command and a
motor pattern to a set of the command and an movement
representation in Movement Cognition Module, and then
adds it to the Example Database. From actual and con-
crete examples of movement representation of a verb in
the Example Database, the system creates a meaning of
the verb by abstracting the examples and adds it to the
Rule Database in Abstraction Module.

In the testing phase, a user inputs an unknown sen-
tence which contains an already known verb in unknown
language contexts (objectives) and physical contexts (ini-
tial position, end position, obstacles). Then, the system
generates a motor angle pattern using a rule and outputs
an movement.

3.1 Prerequisite

In this verbs grounding algorithm, we assume that the
system already acquired Japanese morphology, because
in Japanese text processing the computer has to segment
a sentence into morphological elements first as there are
no spaces between words. In our system we use a mor-
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Fig. 1: System Overview

phological analyzer MeCab4 to segment sentences. More-
over, we also assume that the system has acquired nouns
about the robot’s body parts. That is, the system can
understand which part of body is ”the right hand” and
can calculate where ”the right hand” is exactly in the
standard coordinate system (see section 3.2).

3.2 HUMANOID ROBOT

For our experiments, we used a humanoid robot (KHR2-
HV5) shown in Figure 2. The robot is equipped with
17 motors but no sensors, and it sends signals describing
only its motor states.

We set the standard coordinate system where the ori-
gin is at the robot’s chest, the x-axis is the horizontal
direction of robot’s front side, and the z-axis is vertical
(see Figure 2).

Z

Y
X

Fig. 2: KHR2-HV

4MeCab: Yet Another Part-of-Speech and Morphological
Analyzer, http://mecab.sourceforge.jp/

5Kondo Kagaku Co. Ltd, http://www.kondo-robot.com/



3.3 DIRECT PHYSICAL FEEDBACK

Several methods have already been developed where a hu-
man supervisor teaches movements to humanoid robots,
e.g. the vision based method [19, 20] or the motion cap-
ture based method [21]. However, we decided to imple-
ment a direct physical feedback method where humans
teach movements to a robot by actually moving its body
parts. We claim that it is a universal and natural method
which allows teaching new movements within the limits
of any humanoid robot’s body structure. In addition it
needs no extra equipment as cameras and microphones
and can be implemented in even very simple and inex-
pensive toy humanoids.

4 REPRESENTATION MODEL

The below is the proposed representation model for body
movements. In this model, we define six features to repre-
sent movements. Our target verbs depend on the robot’s
structure we use (e.g. the robot cannot grab things),
and we set the six features to represent these verbs. The
system can represent movements which are independent
of the trajector’s trajectory, because the 3rd, 4th and
5th features describe relationship between trajector and
reference point. The system automatically generates the
representation from a sentence and a motor pattern. Fig-
ure 3 is an example of ”place the right hand on the head.”

1. A trajector name

2. A reference point name

3. The variation of distance between trajector and ref-
erence from initial to final position

4. The distance between trajector and reference in the
final position

5. An above/under positional relationship of trajector
to object

6. A trajector’s trajectory in the coordinate system
where the origin is at reference point’s position, x-
axis is the horizontal direction of trajector’s initial
position, and z-axis is vertical.

Fig. 3: Example of the Model

5 MOVEMENT COGNITION MOD-
ULE

A set of a textual command and a motor angle pattern
which is input by a user is transformed to an example

with the representation model. We will explain how the
Movement Cognition Module works, considering an ex-
ample ”put the right hand on the head” (Figure 4). First,
the motor angle pattern is converted to trajectories of ref-
erenced body parts, ”the right hand” and ”the head”, by
solving the direct kinematics problem. Then, the system
distinguishes which noun is a trajector and which one is
a reference point. Next, the system calculates values of
other features. Finally, the system adds the set of a com-
mand and an movement representation to the Example
Database.

  Sentence and Motor Pattern

  Cognition of Values of Other Features

     Example Addition to the Example Database

  Cognition of Trajector and a Reference Point 

 Transformation to The Standard Coordinate 

Fig. 4: Movement Cognition

6 ABSTRACTION MODULE

In the Abstraction Module, all examples (which are sets
of a command and an movement representation) about
one verb are abstracted as one rule. We will describe
details of the process here (Figure 5). First, all exam-
ples’ strings of nouns in language part are parameterized
as ”@1” and ”@2”, and corresponding first and second
features in the movement representation part are param-
eterized as the same strings. In the following process,
all examples which have both the same abstract sentence
and the same abstract first and second features are re-
garded as targets of verb abstraction. Then, the system
determines feature importance from the 3rd, the 4th and
the 5th features by comparing all examples about each
verb. Next, values of determined features are averaged
as values of rule’s features. Finally, the system saves all
rules to the Rule Database.

7 MOVEMENT GENERATION MOD-
ULE

In the testing phase, a textual command input by a user is
processed in the Movement Generation Module shown in
Figure 6. First, the system distinguishes a trajector and
a reference point in a command which contains known
verb corresponding to the rule about the verb. Then, the
system determines the final position of an movement with
the 3rd, the 4th, and the 5th feature of the rule. Next,
the trajectory of overall movement is generated, suiting
the final position. Finally, the trajectory is translated to
a motor angle pattern. Below we will explain how the
system distinguishes a trajector and a reference point,
and how it creates the trajectory.



 Examples of a Verb

   Addition Rule to the Rule Database

 Averaging of Values 

 Determination of Feature Importance

 Trajector and Reference Point Parameterization

Fig. 5: Abstraction Module

 Sentence

  Translation to Motor Pattern

  Trajectory Generation 

  Calculation of Target Coordinate

Trajector and Reference Point Discrimination

Fig. 6: Movement Generation Module

8 VERB ACQUISITION EXPERI-
MENT

We implemented the above mentioned algorithm in the
humanoid robot, and conducted body movement verbs
acquisition to confirm if the robot can acquire verbs
which have robustness in terms of combination of ob-
jectives, initial position, end position and an obstacle.
We set target verbs as ”oku (place-on)”, ”chikazukeru
(move-close-to)”, ”hanasu (move-away-from)”, ”sawaru
(touch-with).”

Our experimental design is described below. First, for
each verb, the robot learns two training sentences with
different combination of objectives, e.g. ”place the right
hand on the head” and ”place the left hand on the right
hand”, three times each in different initial and end posi-
tion. Then, a test sentence with unknown combination
of objectives is tested three times in different initial and
end position. We set training combinations of objectives
as ”the right hand and the head” and ”the left hand and
the right hand.” Then we also set the test combination as
”the left hand and the head.” If the robot outputs proper
movements, we regard the verb as acquired.

Two participants conducted both learning task and
test. Then they evaluated the output movements of a test
sentence three times on a three point scale (3 is proper,
1 is wrong). Table 1 shows the experimental results.

Table 1: Results (3 is proper, 1 is wrong)
Verb Ave. of A Ave. of B Ave.
place-on 2 2.4 2.2
move-close-to 2 2.7 2.4
move-away-from 3 2 2.5
touch-with 3 2.4 2.7

9 IMPRESSION EVALUATION

To find out how human feels about teaching commu-
nication, we conducted an impression evaluation using
human-robot interaction. In this experiment we had six-
teen participants, which were seven males aged 20-30,
two males aged 30-40, four females aged 20-30 and three
females aged 30-40. Figure 7 shows settings of this ex-
periment. They were asked to have three types of inter-
action with the humanoid robot which had a body and
a GUI (Figure 8). The types of interaction are described
as below.

ROBOT

GUI

KEYBORD

Fig. 7: General Setting

USER INPUT

ROBOT UTTERANCE

Fig. 8: Graphical User Interface of Our System

1. Teaching communication through physical interac-
tions (System A). The robot does not have any verb



Table 2: Results of Impression Evaluation
System A System B System C

Average 5.34 4.81 4.47

knowledge in the beginning and learns verb mean-
ings.

2. Order-Reply interaction (System B). The robot
knows verbs meanings, and outputs a movement for
all orders.

3. Teaching communication through physical interac-
tions (System C). The robot does not have any verb
knowledge in the beginning and does not learn verb
meanings.

In all types of communication, participants input ut-
terances using keyboard and the robot replied with tex-
tual utterances or movements, and all systems knew noun
meanings in the beginning. The users made utterances
using one verb and two objective nouns, for example
”migite wo atama ni oite (place the right hand on the
head).” The verbs were chosen from ”oku (place-on)” and
”hanasu (move-away-from),” while the nouns were cho-
sen from ”migite (the right hand),” ”hidarite (the left
hand)” and ”atama (the head).”

The procedures of each communication are described
as below. In system A, when a user inputs an utterance
and the robot does not know the verb meaning, it asks
”migite wo atama ni oite wo oshiete (teach me to place
the right hand on the head).” Then the user teaches a
movement. Whereas, if the robot knows the verb mean-
ing, it outputs a movement that learned before, and the
user evaluates if the movement is correct. If it is, the
user pushes a ”OK” button, and if it is wrong the user
performs teaching again. In system B, when a user in-
puts an utterance, the robot outputs a correct movement
using initial verb knowledge. In system C, when a user
inputs an utterance the robot can not output any move-
ment and asks the user to teach it. Then the user teaches
a movement.

We explained the systems’ features for participants in
advance, and they had 10 times interactions according
to above procedures per each system in random order.
Shortly after the interactions participants evaluated sys-
tems they used. To measure impressions of the systems,
we used Semantic Differential method with 30 adjective
pairs. Participants were asked to evaluate the interac-
tions using seven levels of all given pairs and the results
are shown in Table 2 and Figure 9.

10 DISCUSSIONS

The verb acquisition experiment showed that the robot
properly acquired four problematic verbs, ”place-on”,
”move-close-to”, ”move-away-from”, and ”touch-with”
by being taught the movements only six times in dif-
ferent contexts. Figures 10 and 11 show how the system
acquired the meanings of the verbs. These representa-
tions clearly show what the important features are for
verb acquisition for robots. That is an important part of
a robot design process. Using our method makes it eas-
ier to understand how the robot represents verbs and to
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Fig. 9: Impressions

consider the capacity and limitations of the model than
the statistical representation models.

The impression evaluation showed that system A had
better impression evaluation as a communication robot
than others. Therefore, we can conclude that the teach-
ing interaction, which is one of complex and deep co-
munication, is more enjoyable and more interesting for
human than simple and shallow order-reply interaction.
Moreover, we found that if teaching is finally not accom-
plished, the impression evaluation values decrease..

Fig. 10: place-on

11 CONCLUSIONS

We proposed an algorithm where a humanoid robot ac-
quires body manipulation verbs through more complex
and deeper communication with human. The algorithm
includes: physical feedback, a novel representation model
with six features containing both the trajector-reference
point relationships and trajector’s trajectory for move-
ments, a mechanism that creates the abstract verb mean-
ings from sets of a textual command and a movement



Fig. 11: move-close-to

representation, and a process that generates movements
for unknown inputs. As a result of the verb acquisition
experiment, the humanoid robot properly acquired four
problematic verbs ”oku (place-on)”, ”chikazukeru (move-
close-to)”, ”hanasu (move-away-from)”, and ”sawaru
(touch-with)” where the abstract meanings of verbs were
independent of contexts. Furthermore, the impression
evaluation results indicated that the more complex and
deeper the communication is the more interasting, enjoy-
able, and fulfilled human-robot communication becomes.
In the future work, we would like to extend language
acquisition ability.
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