Crossing Word Borders
Towards Phrasal Pun Generation Engine

Pawel Dybala

Michal Ptaszynski

Rafal Rzepka Kenji Araki

Graduate School of Information Science
and Technology, Hokkaido University
Kita 14 Nishi 9, Kita-ku, 060-0914 Sapporo, Japan

{paweldybala,ptaszynski, kabura,araki}@media.eng.hokudai.ac.jp

Abstract

In our previous works we showed that
implementing a very simple pun genera-
tor into a chatterbot can visibly improve
its performance. In this paper we present
a more complex pun candidate generation
algorithm, that, using the Internet as a re-
source, is able to generate not only single
words, but also phrasal candidates. The
evaluation experiment showed that the
system can generate pun candidates with
72.5% accuracy. We discuss the results
and point out some directions for the fu-
ture.

1 Introduction

In the first sections of this paper we will briefly
(due to the limited lenght of this paper) summar-
ize existing research about humor. Then, we will
explain our contribution to the field of pun gene-
rating, describe the algorithm of our system, the
results of evaluation experiment and some tasks
for the nearest future of our project.

1.1 Humor

The importance of humor in our lives is actually
not questionable, in both commonsensical and
scientific ways. We all know that “a good laugh”
can make us feel better and bring some refresh-
ment to our boring reality. This benefits of hu-
mor have actually been confirmed in scientific
research. To name only few of such projects — it
was showed that humor can effectively relieve
our stress (Cann et al., 1999) or help deal with
anxiety (Moran, 1996). According to Sprecher
and Regan (2002) the sense of humor is one of
main characteristics we use when choosing a
partner. We have also the research of Mulkay
(1988), showing that we tend to joke when we
discuss difficult subject with others. This leads to
the conclusion that humor actually makes our
conversations easier.

Above findings are consistent with what we
found in our previous experiments (Dybala et al.,
2008). We proved that implementing a simple

humor generator into a chatterbot can signifi-
cantly improve its performance and quality in the
eyes of users and non-users evaluators. Thus, we
believe using the humor to facilitate the HCI is a
worthwhile enterprise and should be continued.
This paper brings us one step further in our pro-
ject.

1.2 Computational Humor

In recent years, the positive traits of humor
(some of which were listed in 1.1) started being
appreciated in the world of science, also in such
fields as Al or NLP. The type of jokes, that is
especially popular in the latter field, is called
“puns” or “linguistic jokes”. The source of fun-
niness in such jokes is grounded in the features
of language itself. A good example of pun is the
well-known deer joke:

“-What do you call a deer with no eyes?

-No-eye deer”,
in which the funniness comes from the homo-
phony between the phrases ‘“no eye deer” and
“no idea”.

One of the first and probably most robust sys-
tems in the field of pun processing is Binsted’s
JAPE — punning riddles generator (Binsted,
1996). Basing on a WordNet-related lexicon, it
was able to generate quite a large spec of riddles
— however, most of them were not evaluated
highly by humans. Also worth mentioning is
McKay’s WISCRAIC system (McKay, 2002),
generating simple puns in three different forms
(question-answer, single sentence and two sen-
tences sequence).

The main problem with most of existing hu-
mor generators is the simplicity and isolation of
their output. Even if the jokes (riddles, puns)
sound funny, it is still hard to imagine them in a
natural surrounding, like daily dialogue. This in
fact restricts possible applications of such sys-
tems — the best we can get is a system that tells
jokes without any wider interaction context, just
in isolated forms.

Actually, in the case of JAPE there was an at-
tempt to integrate it into a system that interacts
with users. Loehr implemented the system into a
conversational agent Elmo, which interacted with

242

players of an online role playing game (Loehr,
1996). The idea itself was quite interesting —
however, the system’s performance was eva-
luated lowly because the lack of relevance be-
tween users’ utterances and the system’s output.

1.3 Our contribution

In our research we decided to bridge this gap.
We have developed a Japanese pun generating
engine and implemented it into a chatterbot,
creating a humor-equipped conversational sys-
tem (Dybala et al., 2008). The system generated
joke-including answers using the interlocutors’
utterances as an input, in order to make them at
least partially relevant to what the users say. Be-
low we present an example of the system in ac-
tion:

User: - Kaeru daikirai! (1 hate frogs!)

System: -Kaeru to ieba tsukaeru desu ne.
(Speaking of frogs, we could use that!)

Evaluation experiments showed that the hu-
mor-equipped chatterbot was actually appre-
ciated and found to be better that a non-humor-
equipped one by the users. Also emotiveness
analysis based evaluation (Dybala, 2009) showed
that the system with humor actually made the
users feel better and elicited more positive emo-
tions than the one without humor.

In the research on joking chatterbots we used a
simple pun generating engine, which based only
on existing words (not phrases), that can be
found in dictionaries. For example, for the word
R E A (“tousan” - father), it would generate a
pun candidate 8| £ (“fousan” - bankruptcy),
which is an existing word (one entrance in a dic-
tionary), but it would not generate such candi-
dates as 1 X A (“toosan” — negative form of
toosu — to let through), which is an inflected
grammatical form. Similarly, with the previous

1. Homophony
(AT ILDNIRBKaeru ga kaeru <The frog comes back>)
2. Mora addition
2.1 Initial mora
(RAARIEER D Suika wa yasuika <Watermelon is cheap>)
2.2 Final mora (737 3M#ME A Kaba no kaban <Hippo’sbag>)
2.3 Internal mora
(FEA A R2FA L Futon ga futtonda <Futon flew away>)
3. Mora omission
3.1Final mora
(A F—DYERE Sukii ga suki <1 like skiing>)
3.2 Internal mora
(AT—F LT TE Suteeki wa suteki <Steaks are cool>
4. Mora transformation
4.1 Consonant transformation
(BF=ELBFET Medamasidokei <Eye-misleading clock>)
4.2 Vowel transformation
(&R D FEE| Senaka no higeki <Senaka’s tragedy>, senaka = back)
5. Phoneme and syllable metathesis
(EBEERD OXE, FIE Manga wo yomu no wa ma, gaman <I
can stand reading commics>)
6. Kanji reading change
(B F Syokkingu <Shocking>)

system it is impossible to generate pun candi-
dates which consist of more than one element.

In this paper we introduce a new, more com-
plex algorithm that is able to generate not only
existing words, but also phrasal candidates (see 2
for the outline).

The evaluation experiment (see 3) showed that
the new algorithm generates pun candidates with
72.5% accuracy, which is promising enough to
proceed with our research. Its next steps are out-
lined in S.

2 Pun generator

The outline of our pun generation algorithm is
presented on Figure 2. In this section, we briefly
describe its main parts.

2.1 Pun generation patterns

In our research, we base on a complex Japanese
puns classification, proposed in our previous
work (Dybala, 2006 — see Figure 1). A big cor-
pus of human-created puns was built, and the
puns were divided into 12 groups (with numer-
ous subgroups), according to mora changes be-
tween the base phrases and phrases transformed
into puns. For example, in a simple pun “kaba no
kaban” (“hippo’s bag”), the base phrase “kaba”
(hippo) is transformed into “kaban” (“bag”). The
technique used here is called “final mora addi-
tion”, as there is one mora (“-n”) added to the
end of the base phrase.

The classification was used in our research to
create pun generation patterns. For example, the
group “final mora addition™ gives us the pattern
that can be transcribed as [base phrase][*], where
[*] means one single mora. Currently, there are
seven patterns implemented in the system (pre-
sented below, with the word karate as an exam-

ple).

7. Morpheme metathesis
(B#EFTEAHBLH otoko wo uru omoide <A memary of selling a
man> - From the title of tv dramal BV 5525 B |0moide wo uru
otoko <A man selling memaories>)

8. Blend
(BEWTIEZEELIBT B 0ite wa koo wo sisonzuru <When you get
old,you startto make waste> - A blend of two proverbs: T&L3T
&S EE BT B Seite wa koto wo sisonzuru <Haste makes
waste>and [ZULYTIEFHZIER 1 Oite wa ko ni sitagae <When
you get old, you should listen to your children>)

9. Division
(B THIERD TF-M X TR Yudetamago wo yudeta no wa mago <It's
the grandchild who boiled the egg>)

10. Quiz
(17 LOEEIE 7 %L | Hanasi no hanasi wa? Nasi! <How would
you call a talk without teeth? A pear.>)

11. Mix of Japanese and foreign languages
(FREE . NLLYSHBIZTE S TAHFEAS, bR FIL- S bR
Tobe-kun, Hamuretto ga kimi ni itte iru darou, tebe oru nottobe
<Tobe, Hamlet is talking to you — To be or not to be>)

12. Pause transference
(®Eh, L ! -EENT =, 8 ! Kane wo kure, tanomu! —
Kane wo kureta, nomu! <Please, give me some money! —You gave
me the money, let’s drink!>)

Figure 1. Dybala’s Japanese pun classification (with examples)

243

Input
a base phrase
(e.g. 7] katana — a
Japanese sword)

, Pun generation

patterns
(homophony,
mora addition...)

Is any
of the
candidates
an existing
word?

Perfect match
candidates list
(A% 7+ katakana -
Japanesealphabet;...)

Phrasal candidates list
(B of-%i kattana:
katta - past form of
“buy”; na — emphatic
particle;...)

Phonetic pun
candidates list
(akatana, ikatana,
ukatana, ekatana,
okatana, katanai,
katakana, kattana...)

Check the co-occurrence with the
base phrase in the Internet
(Mﬂ”l’ﬁ&’]’_” ”kﬂtaﬂa””katakaﬂa”;
“T3"" B 514" “katana””kattana”)

Output: 2 rankings:
(co-occurrence with the base word)

Exact match candidates:
96500="tE A %" 71" (“sikata
na” - no other way)
46000="712h5"" 71" (katakana
- Japanese alphabet) ...

Kana-Kanji Conversion
(1 2H 7 katakana;
B 7% kattana...)

Phrasal candidates:
34500="ﬁf:7§tb‘""ﬂ"
(“kata+nai’-neg. form of katsu —
to win)
2630="& o1=%""71" (katta+na;
katta- past form of “buy”; na —
emphatic particle)...

Figure 2. Pun candidates generating algorithm flowchart

homophony ([karate])
initial mora addition (*karate: akarate, ika-
rate, ukarate...)
3. internal mora addition (ka*rate, kara*te:

karaate, karaite, karaute...)
4. final mora addition (karate*: karatea,
karatei, karateu...)
final mora omission (kara)
internal mora omission (kate)
mora transformation (garate, tarate, ha-
rate...)
In the pattern 7 the number of possible trans-
formations is very large (assuming that any
sound can be transformed into any other sound) —
therefore, in our system we used Japanese pho-
neme similarity values, proposed by Takizawa et
al. (1996) to find phrases that sound more similar
than others.

The patterns were used in the algorithm to
generate phonetic candidates list — see 2.2.

DN —

Nowm

2.2 Pun candidates generation algorithm

Figure 2 presents the outline of our pun generat-
ing system.

Its input is a word or a phrase, which becomes
the base phrase for a pun. When, as in our pre-
vious experiments, the system is implemented
into a chatterbot, the base phrase is extracted
from the user’s utterance (usually a noun, a verb
or an adjective).

In the next step, the base phrase is trans-
formed using the pun generation patterns (see
2.1), in order to generate a list of phonetic candi-
dates. To this point, everything happens in Hira-
gana (Japanese syllable alphabet). Next, each of
the candidates is converted into Kanji (Chinese
characters?, using MeCab-skkserv Kana-Kanji
Converter . In most of the cases, though, there is
more than one transcription possible — thus, we
decided to let the system generate two different

! MeCab-skkserv Kanji-Kana converter,
http://chasen.org/~taku/software/mecab-skkserv/

options everywhere when it was possible. There
are cases in which even more conversions is
possible — however, any further increase of poss-
ible transcriptions would give us an enormous
amount of queries to be made, which, in turn, is
quite time-consuming.

In the next step, all of converted candidates
are analyzed by POS and morphological analyzer
MeCab” to check if any of them is an existing
word. Those which are found to be, form a list of
perfect match candidates, and the rest form a list
of phrasal candidates.

Next, candidates from both lists are used to
perform multiple queries in the Internet (current-
ly - Yahoo search engine). The reason we de-
cided to use the Internet instead of hand-made
lexicons or existing sources (as in other pun ge-
nerators, i.e. JAPE) is that the dictionaries that
already exist are often not adaptable to the pur-
pose of joke generation, and building our own,
pun-generation oriented lexicon would be quite
laborious. The Internet, though, constantly being
updated, it contains the most current information,
also about the language, and can be easily ac-
cessed — all we need is a good algorithm that
would allow us to use these vast resources.

Thus, in our research we decided to use the
Internet to extract lexical information about the
pun candidates. The pun’s base phrase must be
somewhat related to the phrase that will be used
in a pun (i.e., they cannot be completely irrele-
vant; otherwise all we will get will be abstract
humor). Therefore, our algorithm checks the co-
occurrence of each candidate with the base
phrase. If, for example, the base phrase is katana,
and one of the candidates is katfana, the query
phrase for Yahoo is <“katana” “kattana’™>.

2 MeCab: Yet another part-of-speech and morphological
analyzer, T.Kudo, http://mecab.sourceforge.ne

244

I

<750>=<(li+

Human-created joke: F3ZiZ 58\ . (Hakusai ha kusai — Chinese cabbage stinks)
base phrase: |12 (hakusai- Chinese cabbage) — system input

results — co-occurrence with the base phrase ranking:

-exact match candidates (<co-occurrence hit rate>=<proposition>):
<19600>=<.l;7> (hokusai — Japanese name; famous Japanese painter)
<70=>=<{ij1}ii> (hakusai - ocean transportation; importation)

-phrasal candidates (<co-occurrence hit rate==<proposition=):

<34700>=<| L+ 5L > (ha+kusai; ha — subject particle; kusai — to stink)
L= (ha+kusai; ha — tooth/teeth; kusai — to stink)
<400>=</ L +§//> (ha+kyuusai; ha — subject particle; kyuusai — help, salvation)
<91>=<|1+y> (hatpusai; ha — subject particle; pusai — letter y)
<2B>=<[]+ 7 1 > (haku+tai; haku — white; tai — Thailand)
<13==<ljii < +I’i> (haku+sai; haku — put on, wear; sai — time, moment of time; when)
<{1==<i}- { +[%i> (haku+sai; haku — to vomit; sai — moment of time; when)
<B==<[|+ X 7 > (haku+sae; haku — white; sae — if only)
<2==<|lj([1+%3> (gahaku+sai; gahaku - master painter; sai — moment of time; when)
<1==<}}+FL L > (haha+kusai; haha — mother; kusai — to stink)

Figure 3. System’s performance — results for the input hakusai (Chinese cabbage)

Next, for both lists (perfect match candidates
and phrasal candidates) a ranking is formed,
starting from the candidate that had the highest
co- occurrence rate with the base phrase.

Figure 3 presents the results for the base
phrase “hakusai” (a Chinese cabbage), taken
from the human-created joke “Hakusai ha kusai”
(Chinese cabbage stinks).

3 Evaluation Experiment

To check if our approach is right, we conducted
an evaluation experiment.

In our previous experiments with joking chat-
terbot we used an algorithm that generated only
words (not phrasal) candidates. Thus, this time
we also wanted to check how the implementation
of phrasal pun candidates generation algorithm
changed the system’s overall performance.
Therefore, we compared the results for the sys-
tem before and after adding the phrase genera-
tion option.

Evaluation of such entities as humor is always
quite troublesome and there is no robust metho-
dology in this field. In our experiment, we tried
to compare the system’s performance to the level
of human. The details are described below.

Experiment aims:
To test the system’s performance and compare it
with the one we used in our previous research.

Experiment method:

Compare the system’s performance in pun gene-
rating to the level of human. Calculate the results
and compare them with those from our previous
experiments.

Experiment materials:
200 human-created jokes, chosen from a Japa-
nese puns database (Sjobergh et al., 2008).

245

Experiment procedure:

From the 200 human-created jokes, we have ex-
tracted base phrases, which were then used as
input for our system. Next, we checked if among
the candidates generated for each phrase was the
word actually used in the human-created pun.
We calculated the percentage of situations in
which there was a match between the system’s
results and human-created puns, and compared
the result with that from our previous experiment
(without phrase generation).

For example, from the joke: Katana wo katta
na (Bought a Japanese sword, you know) we ex-
tracted the base phrase katana (a Japanese
sword) and used it as an input for our system. If
somewhere on the final candidates list we found
the phrase katta na (bought), it meant that the
system actually generated a right candidate.

80.00%

70.00%

60.00% candidates
50.00% found in the
40.00% output

30.00%
20.00%
10.00%

0.00%

m candidates
not found in
the output

exact match after adding
only phrase
generation

Figure 4. Evaluation experiment results

Experiment results:

As showed on Figure 4, when only exact match
candidates generation was used, the system was
successful only in 43.5% cases, which is not a
very impressing result. However, after adding the

phrasal candidates generation part, the accuracy
was visibly improved and reached 72.5%. We
believe that this result, albeit still far from being
perfect, is promising enough to continue our re-
search.

4 Discussion

The evaluation experiment was fairly successful
and showed that in most cases the algorithm can
generate proper pun candidates, also these based
on phrases, not only on single words.

4.1 What were the rankings for?

Actually, before constructing the algorithm, we
made one more assumption. As there must be
some kind of correlation between the base phrase
and the word used in the pun (as katana and kat-
ta na), we assumed that checking the co-
occurrence of these two and making a ranking of
candidates will allow us to see some regularities.
If, for instance, the phrase that was actually used
in the human-created joke was always on the top
or near the top, this would allow us to choose the
best candidate from the list or at least to reduce
their number. This, however, did not turn out to
be true — the positions of candidates that were
used in human-created puns varied for every joke,
from the top to the very bottom of the ranking.
Therefore, the co-occurrence ranking alone is not
enough to choose the right candidate.

4.2 Human choice = the best choice?

As mentioned above, in our evaluation experi-
ment we assumed that the system works properly
if it generates candidates that were actually used
in human-created jokes. In other words, the as-
sumption was that the phrase chosen by humans
from the set of possibilities is by all means the
right one. This, however, does not necessarily
have to be true, as we can imagine a situation, in
which the system would choose another candi-
date than a human would, and generated a joke
which would be evaluated as more funny than
one created by a human. For example, for the
base word H 3% (hakusai - Chinese cabbage —
see Figure 3) the system generated the phrase |
5N (ha kusai - stinks), which was actually used
in the human created joke; however, on the can-
didates list there was also the phrase 5\ (ha
kusai - teeth stink), which also seems usable in a
pun generation. Also other candidates, if proper-
ly integrated into a sentence, seem at least not
completely useless in terms of pun generation.

Therefore, we believe that — with a proper set
of sentence integration rules — most of candidates
can be used to form a pun. An idea for checking
if this approach is right is presented in 5.4.

5 Conclusion and future work

In this paper we presented a system that gene-
rates pun candidates for given base phrases. It
can generate not only single words, but also
more complex phrases. The system’s perfor-
mance was tested in the evaluation experiment.
Its results are promising enough to justify further
research on this subject. Furthermore, we proved
that the Internet is a good and usable source for
pun generation — this will surely spare the re-
searchers some time, as there is no need to ma-
nually create large humor-oriented dictionaries.
Implementation of the system into a chatter-
bot should visibly improve the results of our pre-
vious research (Dybala et al., 2008, 2009). To
achieve that, some work is still to be done — in
particular, in the nearest future we are planning
to focus on two major tasks: filtrating the candi-
dates list and sentence integration algorithm.

5.1 Filtering the list of candidates

One of the potential problems noticed during the
experiment was the length of the candidates list,
which, in some cases, exceeded 100 propositions.
Although we are very happy to see the system
working that prolifically, and we assume that in
most cases there is no one and only one right
answer, on some (especially very long) lists
some candidates are obviously better that others.
Therefore, we need a good algorithm to filter the
candidate list and reduce it when too long. One
possible idea to do that is to create a hierarchy
based on the type of phonetic generation pattern
used (see 2.1). For example, homophony or mora
addition lead to generation of phrases that are
more similar to the base phrase than those gener-
ated using mora omission. This idea is currently
being tested, with some very promising results of
preliminary experiments.

5.2 Sentence integration algorithm

In our research on joking chatterbots, we used
pun generation algorithm that generated only
single words (not phrasal) candidates, which
were easier to integrate into sentence forms, as
they do not include any inflected forms and in
most cases are nouns, uninflected verbs or adjec-
tives. To generate pun-including sentences, in the
previous system we used such patterns as:

[base phrase] fo ieba [candidate] desu ne
(speaking of [base phrase], it’s [candidate]),
which worked quite well for the single words.
However, in the case of phrases, such candidates
as ha kusai (topic particle + stinks) are much
more difficult to insert into such patterns due to
their grammatical complexity. Thus, here we
face a serious problem: either we create a large
set of sentence integration patterns, to cover as

246

many possibilities as possible (which would be
quite laborious), or again use the power of Inter-
net, this time to find what sentences that actually
include the candidate phrase look like, and ex-
tract patterns that would fit that particular candi-
date. For example, for the candidate t§ 5\ (ha
kusai — teeth stink), the system could find a sen-
tence pattern [noun] % B X 5 & B W\
([noun]wo taberu to ha kusai — if you eat [noun],
your teeth stink). Next, since the base phrase is a
noun, the pattern can be used to form a punning
sentence: & BE5 & W RN (hakusai wo
taberu to ha kusai — if you eat Chinese cabbage,
your teeth stink). Such approach would spare us
the effort of creating the whole set of patterns
manually, and allow the system to always gener-
ate appropriate pattern for the particular pair of
candidate and base phrase.

5.3 Time issues

As we use the Internet search engines (current-
ly — Yahoo), the amount and frequency of al-
lowed queries is restricted and if the system puts
too much load on the search engine, it is recog-
nized as a spammer and temporarily blocked.
Therefore, we had to put pauses between each
query, which caused quite a severe extension of
time needed to generate the candidates. The time
differs according to the amount of generated
phonetic candidates — in total, it took the system
about one week to analyze pun candidates for the
200 base phrases used in the experiment. Need-
less to say, this problem has to be solved in the
nearest future — we are planning to construct a
large Internet-based text corpus, which will al-
low us to perform the queries offline.

5.4 Evaluation of jokes

Evaluation of such phenomena as humor is al-
ways a troublesome issue. In this paper we de-
scribed a method that allowed us to check if the
system is able to generate pun candidates in a
similar way that humans do. This approach,
however, is good only on the level of candidates
generation. Evaluating the usability of generated
candidates is much more difficult and by defini-
tion subjective, as it requires the presence of hu-
man evaluators. If, for example, in order to eva-
luate the candidates usability, you show the eva-
luators the list and ask them to tell which one is
better, their assessment would be obviously li-
mited by their imagination. Even if the evaluator
says that the particular phrase cannot be used to
create a joke, the system could potentially do that
and actually generate a pun.

One possible way to solve this problem on the
level of candidate usefulness evaluation, we
could use a sort of Wizzard-of-Oz approach: all

247

candidates could be manually integrated into
punning sentences (using as simple patterns as
possible), and then showed to the evaluators as
complete puns. This method is still to be tested —
however, we believe it could be successful to
assess the usefulness of candidates and, in con-
sequence, lead to construction of more sophisti-
cated pun generation algorithm.

References

Kim Binsted. 1996. Machine humour: An imple-
mented model of puns. Univ. of Edinburgh, UK.

Kim Binsted, and Osamu Takizawa. 1997. Computer
§eneration of Cpuns in Japanese. Sony Computer
cience Lab, Communications Research Lab.

Arnie Cann, Kitty Holt, and Lawrence G. Calhoun.
1999. The roles of humor and sense of humor in
responses to stressors. Humor: International
Journal of Humor Research, 12(2):. 177-193.

Karen S. Cook, and Eric Rice. 2003. Social exchange
theory. J. Delamater (Ed.), Handbook of social
psychology, 53--76. NewYork: Plenum (2003) 11.
Difficult subjects

Pawel Dybala. 2006.Dajare - Nihongo ni okeru
doon’igi ni motozuku gengo yigi (Dajare — Japa-
nese puns based on homophony). Jagiellonian Un-
iv., Press, Krakow, Poland.

Pawel D%fbala, Michal Ptaszynski, Shunsuke Higuchi,
Rafal Rzepka, and Kenji Araki. 2008. Humor
Prevails! - Implementing a Joke Generator into a
Conversational System. In the Proceedings of the
21st Australasian Joint Conference on Al (AI-08),
Wobcke, W. and Zhang, M. (eds), Auckland, New
Zealand, 2008. Springer-Verlag LNAI Vol. 5360,
214-225, Springer Berlin & Heidelberg.

Pawel Dybala, Michal Ptaszynski, Rafal Rzepka, and
Kenj1i Araki 2009. Humorized Computational In-
telligence - towards User-Adapted Systems with a
Sense of Humor. In the Proceedings of the EvoS-
tar 2009 Conference, EvoWorkshops. M. Giaco-
bini et al. (Eds.). Springer-Verlag LNCS, Vol.
5484, 452-461, Springer Berlin & Heidelberg

Dan Loehr. 1996. An integration Oé"a pun generator
with a natural language robot, Proc. Intern.
Workshop on Computational Humor, University
of Twente, Netherlands, 161-172.

Justin McKay. 2002. Generation of idiom-based wit-
ticisms to aid second language learning. In: Stock
etal., 77--87

Carmen C. Moran. 1996. Short-term mood change,

perceived funniness, and the effect of humor
stimuli.” Behavioral Medicine 22(1): 32—38

Michael Mulkay. 1988. On humor: Its nature and its
place in modern society. NY: Basil Blackwell

Susan Sprecher, and Pamela C. Regan. 2002. Liking
some things (in some people) more than others:
Partner preferences in romanic relationships and
friendships. Journal of Social and Personal Rela-
tionships, 19(4): 463—481

Jonas Sjobergh, and Kenji Araki. 2008. Robots Make
Things Funnier, Proceedings of LIBM'08, Asahi-

kawa, Japan
Osamu Takizawa, Masuzo Yanagida, Akira Ito, and
Hitoshi Isahara. 1996. On computational

processing of rhetorical expressions | puns, iro-
nies and tautologies. In Proc. of The International
Workshop on Computational Humor, 39-52, Ne-
therland

