

HumourSpace: A Novel Framework for Quantification and Characterisation of Humour

Midhush Manohar T. K.

Ninaad R. Rao Nishant Ravi Shankar PES University, Bengaluru, India

Ramamoorthy Srinath

Overview

- Introduction
- Related Work
- Data Collection & Preprocessing
- System Design
- Findings
- Conclusions & Future Work

Introduction

- The field of Computational Humour
 - Application of humour in AI (and particularly NLP) is limitless
- The associated challenges in characterizing this complex entity
 - Most existing solutions are glorified if-else bots

Preliminary Experiments

Quality Estimation of Humour using Supervised Multi-Class Classification

- Universal Sentence Encoder (USE) embedded sentences
- Classifiers SVM, RFC and HAN
- Accuracy equaled the majority-class model

Preliminary Experiments

Analysis of User Ratings

- Compared 133 responses against crowdsourced ratings using IAAP
- Overall IAAP was 20.36%
 - in-line with the results of *Winters et al., 2018* (41.36%)

$$Inter - Annotator Agreement = \frac{Freq(A)}{T}$$

where :

T = Total number of responses

 $A = Average \ rating$

Preliminary Result and Our Approach

Preliminary Experiments show that Humour is Subjective in nature

Our Approach

Objectively evaluate Humour based on Computational Linguistic Features

- Ubiquitous ranking system

Related Work

Following papers focus on detecting Humour by classifying content as Humorous or Non-Humorous

- Cai, Jim, and Nicolas Ehrhardt. *Is this a joke?*. 2013.
 - recognition of Humour via linguistic features
- Yang, Diyi, et al. *Humor recognition and humor anchor extraction*. 2015.
 - identifying semantic structures behind Humour
- Chen, Peng-Yu, and Von-Wun Soo. *Humor recognition using deep learning*. 2018.
 - detection of Humour using CNNs and Highway Networks

Winters, Thomas, Vincent Nys, and Daniel De Schreye. *Automatic joke generation: Learning humor from examples.* 2018. introduces an algorithm that learns Humour (and Humour level) from a set of jokes that are human-rated

- Template based (I like by X like I like my Y, Z)
- Uses features inspired by Ritchie, Graeme. *Developing the incongruity-resolution theory.* 1999.
- Depends on crowdsourced ratings
- Winters, Thomas, Vincent Nys, and Daniel De Schreye. *Towards a general framework for humor generation from rated examples.* 2019. metrical schemas for lexical relations

Uniqueness of Our Work

- Does not learn from crowdsourced ratings
 - Overcoming the bias of the underlying classification system
- Uses linguistic features in an unsupervised manner
 - Allowing to objectively evaluate Humour

Data Collection

•	Hum	orous Texts	Domain	Data size	
	0	Web-Scraped Data	Animal	0287	
		https://www.ajokeaday.com	Allilla	9201	
		https://onlinefun.com	Bar	9834	
		■ <u>https://unijokes.com</u>	Event/Day	7803	
		http://www.jokesoftheday.net	Human	27579	
	0	Pungas Taivo A dataset of english plaintext	Inappropriate	7148	
	0	iokes. 2017.	Politics	43717	
•	Non-	humorous Texts	Profession	27362	
-	0	Wikinedia	Relationship	33284	
	0	Misra, Rishabh, News Category Dataset.	Religion	7908	
		2018.	Sports	23349	
			Technology	9266	
			Transport/Location	10714	

Domain Classification

	Initial Aggregation		Train					
•	initial Aggregation		Accuracy	Recall	Precision	F-1 Score		
	 251 Domains 	FFN +	0.65	0.65	0.65	0.65		
	• Overlaps	USE						
	Rucketizing Domains	RFT +	0.63	0.63	0.64	0.63		
•	Bucketizing Domains	USE	0.60	0.72	0.65	0.67		
	 USE based Cosine Similarity, GloVe based 	USE	0.09	0.72	0.05	0.07		
	Semantic Similarity, ELMo embeddings based	HAN +	0.78	0.76	0.78	0.77		
	Similarity	GloVe						
	 Poor segregation of Domains 	Test						
			Accuracy	Recall	Precision	F-1 Score		
•	Manual Clustering	FFN +	0.54	0.64	0.43	0.44		
•	Domain Tagging	USE		nonseri	1.107.04.07			
•		RFT +	0.53	0.61	0.40	0.42		
	 FFN, RFC and SVM with USE embeddings 	USE	0.00	0.71	0.65	0.67		
	 HAN with GloVe embeddings 	SVM +	0.69	0.71	0.65	0.67		
		HAN +	0.78	0.76	0.78	0.77		

GloVe

Preprocessing

- Removal of Emojis and non-ASCII characters
- Expansion of Contractions
- Tokenisation

Total Processed Dataset Size = 5,56,978 sentences (2,78,489 * 2)

Experimental Setup

Algorithm:

- Domain Classification
 - Train:Test:Validation split = 80:10:10
 - Learning Rate = 0.001
 - Adam Optimizer
 - Evaluated using Accuracy, Precision, Recall and F-1 Score
- SVM and FFN Models
 - Hyperparameters Nested Cross-Validation and Grid Search

Hardware:

- Operating System Ubuntu 16.04 LTS with x86-64 Architecture
- Python 3.6
 - Tensorflow
 - PyTorch
- Google Colab and Kaggle
 - Nvidia Tesla K80/P100 GPUs

System Design

(b) Personalised Rating Mapper (PRM)

Quality Estimation

Binary Classification of Humorous vs. Non-humorous Texts

	SVM + USE	2-layered FFN + USE	1-layered FFN + USE
Train			
Accuracy	0.97	0.98	0.98
Precision	0.97	0.98	0.98
Recall	0.97	0.98	0.98
Support	278489	278489	278489
Test			
Accuracy	0.97	0.98	0.98
Precision	0.97	0.98	0.98
Recall	0.97	0.98	0.98
Support	278489	278489	278489

Quality Feature Generator (QFG)

- Obviousness
- Compatibility
- Inappropriateness
- Conflict (Humorous and Non-Humorous)
- Adjective Absurdity
- Noun Absurdity
- HMM model
- N-gram model

Ritchie, Graeme. *Developing the incongruity-resolution theory.* 1999.

Obviousness

$$Obviousness = \frac{\sum_{t=1}^{t=T} P(token_t)}{T}$$

where:

$$\begin{split} T &= Total \; number \; of \; tokens/words \\ P &= Probability \end{split}$$

Compatibility

$$Compatibility = \frac{\sum_{t=1}^{t=T} \sum Meanings(token_t)}{T}$$

where:

 $T = Total \ number \ of \ tokens/words$

Inappropriateness

$$Inappropriateness = \frac{\sum_{t=0}^{T} \frac{Freq_{sensual}(token_t)}{Freq_{normal}(token_t)}}{T}$$

where : $T = Total \ number \ of \ tokens/words$

Sjobergh, Jonas. "Vulgarities are fucking funny, or at least make things a little bit funnier." *Proceedings of KTH CSC, Stockholm. 2006* (2006).

Conflict

$$Sum = \sum Bigram_{text}(token_{adj}, token_{noun})$$
$$Conflict_{text} = \frac{Sum}{Pair}$$

where:

T = Total number of tokensPair = Total number of adjective, noun pairsin a sample

Winters, Thomas, Vincent Nys, and Daniel De Schreye. "Automatic joke generation: Learning humor from examples." *International Conference on Distributed, Ambient, and Pervasive Interactions*. Springer, Cham, 2018.

Adjective Absurdity

$$Value_{A} = \frac{\sum(N, A)}{\sum_{j=1}^{j=n} \sum(N, A_{j})}$$

$$Adjective_Absurdity = \frac{\sum_{i=1}^{Pair} Value_{i}}{Pair}$$
(6)

where:

$$A = Adjective$$

 $N = Noun$
 $Pair = Total number of adjective, noun pc____
in a sample$

Winters, Thomas, Vincent Nys, and Daniel De Schreye. "Automatic joke generation: Learning humor from examples." *International Conference on Distributed, Ambient, and Pervasive Interactions*. Springer, Cham, 2018.

Petrović, Saša, and David Matthews. "Unsupervised joke generation from big data." *Proceedings of the 51st annual meeting of the association for computational linguistics (volume 2: Short papers)*. 2013.

Noun Absurdity

$$Weight = Cosine_Distance(Concept_Embedding(N),$$

$$Concept_Embedding(A))$$

$$Value_{N} = \frac{\sum(N, A) * Weight}{\sum_{j=1}^{j=n} \sum(N_{j}, A)}$$

$$Noun_Absurdity = \frac{\sum_{i=1}^{Pair} Value_{i}}{Pair}$$
(7)

where :

$$egin{aligned} A &= Adjective \ N &= Noun \ Pair &= Total number of adjective, noun pairs \ in a sample \end{aligned}$$

Labutov, Igor, and Hod Lipson. "Humor as circuits in semantic networks." *Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*. 2012.

HMM and N-Gram Probability

 $HMM_probability = log(P(O|\lambda))$ where :

$$O = O1, O2, ...On (Observed Sequence)$$

 $\lambda = HMM Model Parameters$

$$N - gram_probability = log(P(O))$$

where :

$$O = O1, O2, ...On (Observed Sequence)$$

HMM Probability	1	-0.013	-0.15	0.012	-0.028	-0.0066	-0.0028	-0.013	0.57	-1.0
Adjective Absurdity	-0.013	1	0.002	0.00034	0.00016	0.022	0.008	0.054	0.0011	-0.8
Obviousness -	-0.15	0.002	1	-0.038	-0.02	0.0015	0.0019	0.00098	-0.12	
Compatibility	0.012	0.00034	-0.038	1	0.015	0.0077	0.0046	-0.0042	-0.048	-0.6
Inappropriateness	-0.028	0.00016	-0.02	0.015	1	-0.0036	-0.0027	-0.0062	-0.017	-0.4
Humorous Conflict	-0.0066	0.022	0.0015	0.0077	- <mark>0.0036</mark>	1	0.39	0.14	0.0011	
Non-humorous Conflict	-0.0028	0.008	0.0019	0.0046	-0.0027	0.39	1	0.14	-0.0052	-0.2
Noun Absurdity	-0.013	0.054	0.00098	-0.0042	-0.0062	0.14	0.14	1	-0.0085	-0.0
N-gram Probability	0.57	0.0011	-0.12	-0.048	-0.017	0.0011	-0.0052	-0.0085	1	
	HMM Probability -	Adjective Absurdity -	Obviousness -	Compatibility -	Inappropriateness -	Humorous Conflict -	Non-humorous Conflict -	Noun Absurdity -	N-gram Probability -	

Correlation between the QFG Features

Unsupervised Quality Estimator (UQE)

Representations after PCA

- 1. DBSCAN > K-means
- 2. Clusters do not represent quality of humour
 - Objective humour characteristics

Analysis of Clusters

- 1. Domain Invariancy
- 2. Skewness of features

Figure 5: Bar graph representing skewness of feature values for each of the clusters.

Sentence	Cluster
1. My friend owns a zoo but the only animal	1
 Why is it hard to break up with a star 	2
trek fan ? Because they are such kling-ons 3. What do you get when you drop a piano	3
on a minor ? a flat minor 4. Did you get that joke about the Titanic ?	4
It took a while to sink in . 5. If I had only one day left to live. I would	5
live it in my math class : it would seem so much longer .	5

Personalised Rating Mapper (PRM)

Identification of User Preferences

Algorithm 1: PRM algorithm to find user preference with respect to UQE clusters.

```
Input: userRating, UQERating arrays for a given
       domain
Output: Clusters mapped with user's preference
PRM (userRating, UQERating);
n_1 = number of UQE clusters ;
n_2 = length of userRating array ;
Let AvgScore[1...n_1] be array with average score
 with index being the corresponding bucket;
for i = 1 to n_1 do
   count = 0:
   score = 0:
   for j = 1 to n_2 do
       if UQERating[i] == i then
          count += 1:
          score += userRating[j];
       end
   end
   AvgScore[i] = score / count;
   //Average for bucket i
end
clusters = array with cluster values sorted based on
 AvgScore array;
return clusters;
```

Findings

Second Survey - with User Preferences

72.9% user agreement over 20.3%

Future Work

- Role of Clusters as an evaluation metric (similar to BLEU)
- Extending to non-English languages
- Enhancements in the PRM algorithm

Thank you