lt

RRALERTASY B 1T RS FERGRCE (20114F3)

i

SPEC - Sentence Pattern Extraction and Analysis Architecture

Michal Ptaszynski Rafal Rzepka i Kenji Araki # Yoshio Momouchi §

1 JSPS Research Fellow / High-Tech Research Center, Hokkai-Gakuen University
ptaszynski@hgu. jp
I Graduate School of Information Science and Technology, Hokkaido University
{kabura, araki}@media.eng.hokudai.ac.jp
§ Department of Electronics and Information Engineering,
Faculty of Engineering, Hokkai-Gakuen University
momouchi@eli.hokkai-s-u.ac.jp

Abstract

A “’sentence pattern” in modern Natural Language Processing and Computational Linguistics is often considered
as a subsequent string of words (n-grams). However, in many branches of linguistics, like Pragmatics or Corpus
Linguistics, it has been noticed that simple n-gram patterns are not sufficient to reveal the whole sophistication of
grammar patterns. We present a language independent architecture for extracting from sentences more sophisticated
patterns than n-grams. In this architecture a ’sentence pattern” is considered as n-element ordered combination of

sentence elements (words). This paper presents general description of the architecture.

1 Introduction

Automated text analysis and classification is a usual task
in Natural Language Processing (NLP). Some of the ap-
proaches to text (or document) classification include Bag
Of Words (BOW) or n-gram. In the BOW model, a text
or document is perceived as an unordered set of words.
BOW thus disregards grammar and word order. An ap-
proach in which word order is retained is called the n-
gram approach. This approach perceives a given sentence
as a set of n-long ordered sub-sequences of words. This
allows for matching the words while retaining the sen-
tence word order. However, the n-gram approach allows
only for a simple sequence matching, while disregarding
the grammar structure of the sentence. Although instead
of words one could represent a sentence in parts of speech
(POS), or dependency structure, the matching using n-
grams still does nto allow for matching more sophisti-
cated patterns than the subsequent string of items. An
example of a pattern more sophisticated than n-gram is
presented in top part of Figure 1. A sentence in Japanese
”Kyo wa nante kimochi ii hi nanda !” (What a pleasant
day it is today!) contains a well known syntactic pattern
“nante * nanda I”'. However, it is not possible to dis-
cover this subtle pattern using n-gram approach. Methods
trying to go around this problem, include a set of machine
learning (ML) techniques, such as Neural Networks (NN)
or Support Vector Machines (SVM). Machine learning
have proved its usefulness for NLP in text classification
for different domains [3, 4]. However, there are several
problems with the ML approach. Firstly, since machine
learning is a self-organizing method, it disregards any lin-

lequivalent of wh-exclamatives in English; see [2] for details.

— 667 —

guistic analysis of data, which often makes detailed error
analysis difficult. Moreover, the statistical analysis per-
formed within ML is still based on words (although rep-
resented as vectors), which hinders dealing with word in-
flection and more sophisticated patterns such as the one
mentioned above. Although there are attempts to deal
with this problem, such as the string kernel method [5],
in ML one always needs to know the initial feature set
to feed the algorithm. Finally, methods for text classi-
fication are usually inapplicable in other tasks, such as
language understanding and generation.

In our research we aimed to cerate an architecture ca-
pable to deal or help dealing with the above problems.
The system presented in this paper, SPEC, is meant to
extract from sentences patterns more sophisticated than
n-grams, while preserving the word order. SPEC can
work with one or more corpora written in any language,
as long as the corpora are preprocessed (spaced, POS
tagging, etc.). It extracts all frequent patterns, such as
the one mentioned above. The patterns could be fur-
ther used in direct document classification and as features
for machine learning algorithms. Moreover, the patterns
could be used as sentence templates in language genera-
tion tasks. This paper presents general description of the
system, proposes some of the methods to evaluate SPEC
performance and mentions several possible applications.

2 System Description

This section contains detailed description of SPEC, or
Sentence Pattern Extraction and analysis arChitecturte.
In the sections below we describe the system sub-

All Rights Reserved.

Copyright(C) 2011 The Association for Natural Language Processing.

procedures. This includes corpus preprocessing, gener-
ation of all possible patterns, extraction of frequent pat-
terns, post-processing and further analysis. By “corpus”
we consider any collection of sentences or instances. It
can be very large, containing hundreds of thousands of
sentences (or more), or it can be rather small consisting
of only several or several dozen sentences. In any case
SPEC will extract sentence patterns distinguishable for
the corpus. In the assumption, the larger and the more co-
herent the original corpus is, the more frequent patterns
will be extracted.

2.1 Corpus Preprocessing

SPEC is capable to deal with any not preprocessed raw
corpora, as long as the lexical form of the language con-
sists of smaller distinguishable parts, like letters, or char-
acters. This makes SPEC capable to deal with a cor-
pus written in any type of language, including analytic
languages (like English or Mandarin Chinese), aggluti-
native languages (like Japanese, Korean or Turkish), or
even polysynthetic languages like Ainu, in both spaced
and non-spaced form. However, in the Pattern Gener-
ation sub-procedure, SPEC creates a very large number
of temporary patterns (all possible ordered combinations
of sentence elements). Therefore, considering the time
of processing, as a default we will assume that the corpus
should be at least spaced. Other relevant, optional prepro-
cessing might include part-of-speech (POS) and depen-
dency relation tagging (or any other additional informa-
tion as long as there exist a sufficient tool). Three exam-
ples of sentence preprocessing with and without POS tag-
ging are presented in Table 1 for a sentence in Japanese?.
The sentence in the example was spaced and tagged using
MeCab [1], a standard POS tagger for Japanese.

2.2 Pattern Generation

Generation of All Combinations from Sentence Ele-
ments In this sub-procedure, the system generates or-
dered non-repeated combinations from the elements of
the sentence. In every n-element sentence there is k-
number of combination groups, such as 1 < k < n,
where k represents all k-element combinations being a
subset of n. The number of combinations generated for
one k-element group of combinations is calculated as bi-
nomial coefficient, as represented in equation 1. More-
over, in this procedure we create all combinations for all
values of k from the range of {1,...,n}. Therefore the
number of all combinations is equal to the sum of all com-
binations from all k-element groups of combinations, like

in the equation 2.
n\ n! 0
k) kl(n—k)!

2Japanese is a non-spaced agglutinative language.

— 668 —

Table 1: Three examples of preprocessing of a sentence
in Japanese with and without POS tagging; N = noun,
TOP = topic marker, ADV = adverbial particle, ADJ =
adjective, COP = copula, INT = interjection, EXCL =
exclamat. mark.

Sentence: SHIFGATREFLLVAGATR!
Transliteration: Kyowanantekimochiiihinanda!
Meaning: Today TOP what pleasant day COP EXCL
Translation: ~What a pleasant day it is today!
1. Words: Kyo wa nante kimochi ii hi nanda !

2. POS: NTOP ADV N ADJ N COP EXCL
3. Words+POS: Kyo[N] wa[TOP] nante[ADV]

mochi[N] ii[ADJ] hi[N] nanda[COP]

/[EXCL]

i n\ n! n n! - n!
k) Un-1)! 2n-2)!" """ nl(n-n)
(2)

Ordering of Combinations In mathematics, combina-
tions are groups of unordered elements. Therefore, using
only the above formula, we would obtain patterns with
randomized order of sentence elements, which would
make further sentence querying impossible. To avoid ran-
domization of sentence elements and retain the sentence
order we needed to sort the elements after all combina-
tions have been generated. To do that we used automatic
generation of double hash maps. Firstly, all elements of
the original sentence are assigned ordered numbers (1, 2,
3...). After a combination is generated, elements of this
combination are re-assigned numbers corresponding to
the numbers assigned to the original sentence elements.
Then the new set of numbers is sorted. This provides
the appropriate order of combination elements consistent
with the order of elements in the original sentence.

Insertion of Wildcard On this stage the elements are
sorted, however, to perform effective queries to a corpus
we would also need to specify if the elements appear next
to each other or whether they are separated by a distance.
In practice, to solve this problem we need to place a wild-
card between all non subsequent elements. We solved
this using one simple heuristic rule. If absolute difference
of hash keys assigned to the two subsequent elements of a
combination is higher than 1 we add a wildcard between
them. This way we obtain a set of ordered combinations
of sentence elements with wildcards placed between non
subsequent elements. Both parts of this procedure, the
sorting of elements using automatically generated hash
maps and the wildcard insertion, are represented in Fig-
ure 1. Finally, to prepare the set of all generated patterns
to further processing, we perform a filtering of repeating
patterns to leave only the original patterns.

All Rights Reserved.

Copyright(C) 2011 The Association for Natural Language Processing.

Original sentence: | Ky6 wa nante kimochi ii hi nanda | | ————) | nante * nanda !

(What a pleasant day it is today!)

Extracted pattern:

#hash_keys #hash_values Generated three

element combination

nanda }—~|77
nante }—°|z

e

E’—~| nante
|4 —— kimoohi |
]

kseoyr; =
|

Reference to
#hash_keys

nante

e |
!

Reference to
#hash_values

If] #k - #k+1 | >1
add * between
#k and #k+1

Figure 1: The procedure of sorting of combination elements using automatically generated hash maps.

2.3 Pattern Extraction and Frequency
Calculation

In this sub procedure SPEC uses all original patterns gen-
erated in the previous procedure to extract patterns that
appear in a given corpus and calculate their frequency.
This represents a similar approach to the usual TF (term
frequency) approach. However, since in our research
we do not use only single terms, but sentence patterns,
it is necessary to propose a new nomenclature, namely
PF (pattern frequency)’. PF is calculated for all patterns
found in the matched corpus.

Although the pattern frequency calculation could be
performed as a part of the previous procedure (pattern
generation), we made this a step a separate sub-procedure
for several reasons. Firstly, SPEC is assumed to deal with
one corpus as well as several different corpora, depend-
ing on the task it is used in. This way we needed to retain
the ability to generate patterns from one (given) corpus
and match them to another (target) corpus. This ability
could be useful in such tasks as lexicon expansion (when
looking for certain phrases appearing with the patterns),
or text classification (when classifying sentences from the
target corpus using a set of patterns from the given cor-
pus). Separating pattern generation and pattern extraction
procedures was also needed for cases of dealing with two
or more corpora, when both are given and target corpora.
Making pattern extraction a separate procedure allows us
to perform the extraction on all corpora concurrently, e.g.,
using a fork or thread function of parallel programing.
Eventually, this significantly shortens the time of process-
ing. Finally, we aimed in making a module based expand-
able system in which different procedures would work as
separate agents. This way each separate procedure could
be thoroughly evaluated and improved when needed.

3However, we do not recommend using PF-IDF, since the number of
patterns extractable from sentences is much greater than single terms.
Perhaps a division not by all possible patterns but by all the same k-
element patterns might show some relevancies. When proposing an
approach substituting TF-IDF, it should be also taken into an account
that in the range {1...n} the number of patterns increases in the middle
and decreases on the ends of the range.

— 669 —

2.4 Post-processing

In the post-processing phase SPEC performs simple anal-
ysis of patterns extracted from the given corpus/corpora
to provide pragmatic specifications of the corpus. We
use the term pragmatic specifications in a similar way to
Burkhanov, who generally includes here indications and
examples of usage [6]. The post-processing is done dif-
ferently for: 1) only one given corpus and 2) a set of two
corpora. In the future we also consider the analysis of
more than two corpora.

One Corpus Case The post-processing of one corpus
is done as follows. Firstly all patterns that appeared only
once are filtered out and deleted. This is done to elim-
inate quasi-patterns. A quasi-pattern is a pattern, which
was created from one sentence in the process of pattern
generation, but was not found elsewhere in the rest of the
corpus. In practice, it means that it is not a frequently
used sentence pattern and therefore keeping it would bias
the results. The patterns that appeared more than once are
grouped according to the pattern length (number of ele-
ments). Within one group the patterns are also sorted de-
creasingly. In this way the patterns can be used in further
analysis. The general pragmatic rule which applies here
says that the longer the pattern is, and the more often it
appears in the corpus, the more it is specific and represen-
tative for the corpus. As an example of application of this
post-processing procedure, we could mention such NLP
tasks as topic detection/extraction or identifying individ-
ual user style characteristics (when the analyzed corpus
consists of single user messages).

Two Corpora Case In many NLP tasks, especially
those taking advantage of machine learning methods, it
is often necessary to obtain lists of two distinctive sets
of features [7]. Such tasks include all sorts of text clas-
sification, including spam filtering, sentiment and affect
analysis [8], or cyber-bullying detection [4].

The post-processing of two corpora is done as follows.
Firstly SPEC deletes only those quasi-patterns that ap-

All Rights Reserved.

Copyright(C) 2011 The Association for Natural Language Processing.

Jp——

(IF MORE THAN ONE)

CORPORA COMPARISON

H CORPUS | PATTERN ! PATTERN | POSTPROCESSING !
CORPUS : PREPROCESSING : GENERATION : EXTRACTION : - EXTRACTLIST OF :
: - SPACING | |- CERATEALL : - MATCH PATTERN LIST | I | FREQUENT PATTERNS !
1 |- POSTAGGING : COMBINATIONS i | TO CORPUS/CORPORA : IN CORPUS/CORPORA :
: - DEPENDENCY : - ADD WILDCARDS : - EXTRACT PATTERNS : - PATTERNS SORTED BY: :
! [RELATION TAGGING | 1 | - DELETE REPEATING I | - CALCULATEPATTERN | | | 1.PATTERN LENGTH |
H—— 1 | PATTERNS | | occurence I | 2. occurrence !
L - -:. --------------- 4
1 - GENERATE
PATTERN LISTS FOR n-LONG SENTENCE : PRAGMATIC SPECS FOR
1-length 2-length (n-1)-length n-length |, CORPUS/CORPORA
: — COMPARE CORPORA
1
1
1
1
1
1

- EXTRACT ORIGINAL FREQUENT PATTERNS FOR CORPORA
- SPECIFY DISTINCTIVE FEATURES OF CORPORA

Figure 2: Flow chart of the SPEC system.

peared only once in both corpora. For all patterns which,
appeared more then once in at least one corpus, SPEC
calculates for which of the two corpora the they are more
distinctive. Firstly a weight w), of a pattern in k-long
group of patterns is calculated by dividing pattern fre-
quency (PF) by number of all patterns left in the group af-
ter deletion of quasi-patterns, like in the equation 3. The
confrontation of two assigned weights shows for which
corpus the pattern is more distinctive.

PF

= 3
b all — quasi ©)

3 Conclusions and Future Work

In this paper we presented a description of SPEC, or Sen-
tence Pattern Extraction and analysis arChitecturte. The
presented system, is meant to extract sentence patterns
from corpora. The extracted patterns are more sophisti-
cated than the ones obtained in a usual n-gram approach,
as SPEC does not assume that two subsequent elements
of a pattern appear subsequently also in the sentence.
SPEC firstly generates all combinations of possible pat-
terns and calculates their pattern frequency (PF). SPEC is
capable of processing corpora written in any language, as
long as they are minimally preprocessed (spacing, POS
tagging, dependency structure, etc.). The patterns could
be further applied in different NLP tasks, including doc-
ument classification, user detection, or sentiment analy-
sis. Frequent patterns could be also used as sentence tem-
plates in language generation tasks.

In the near future we plan to verify several aspects
of SPEC. Firstly, we will confront SPEC with the usual
n-gram approach. We plan at least two types of evalu-
ation. In Quantitative Evaluation we will compare the
number of extracted n-grams to the number of extracted
SPEC (non n-gram) patterns (excluding quasi-patterns
and quasi n-grams). In Qualitative Evaluation we will
compare pattern frequency (PF) with n-gram frequency
to specify the effectiveness of our method, or how many

— 670 —

valuable patterns are lost in the n-gram approach.

Another method for evaluation will be applying SPEC
to other tasks, such as spam classification, sentiment
analysis [8], or cyber-bullying detection [4]. We also plan
to use SPEC in lexicon expansion, which has been no-
ticed necessary in tasks like affect analysis [9].

Acknowledgments

This research was supported by (JSPS) KAKENHI Grant-in-
Aid for JSPS Fellows (22-00358).

References

[1] Taku Kudo. MeCab: Yet Another Part-of-Speech and Morpholog-
ical Analyzer, 2001. http://mecab.sourceforge.net/

[2] Kaori Sasai, The Structure of Modern Japanese Exclamatory
Sentences: On the Structure of the Nanto-Type Sentence. Studies
in the Japanese Language, Vol, 2, No. 1, pp. 16-31, 2006

Fabrizio Sebastiani. Machine learning in automated text catego-
rization. ACM Comput. Surv., 34(1), pp. 1-47, 2002.

Michal Ptaszynski, Pawel Dybala, Tatsuaki Matsuba, Fumito
Masui, Rafal Rzepka and Kenji Araki. Machine Learning and
Affect Analysis Against Cyber-Bullying, In Proceedings of
AISB2010, LaCATODA Symposium, pp. 7-16.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristian-
ini, and Chris Watkins. Text classification using string kernels,
The Journal of Machine Learning Research, 2, pp. 419-444, 2002.

Igor Burkhanov. Pragmatic specifications: Usage indications,
labels, examples; dictionaries of style, dictionaries of collocations,
In Piet van Sterkenburg (Ed.). A practical guide to lexicography,
John Benjamins Publishing Company, 2003.

3

—

[4

—_

[5

—_

[6

—_

[7

—

George Forman. An extensive empirical study of feature selection
metrics for text classification. J. Mach. Learn. Res., 3 pp.
1289-1305, 2003.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs
up?: sentiment classification using machine learning techniques.
In Proceedings of the ACL-02 conference on Empirical Methods
in Natural Language Processing (EMNLP ’02), pp. 79-86.
Ptaszynski, M., Dybala, P., Rzepka, R. and Araki, K., Affecting
Corpora: Experiments with Automatic Affect Annotation System
- A Case Study of the 2channel Forum, Proceedings PACLING-09,
pp. 223-228, 2009.

[8

[l

[9

[

All Rights Reserved.

Copyright(C) 2011 The Association for Natural Language Processing.

